大众点评爬取------分析成都必吃菜

本文通过模拟手机浏览器数据采集,分析大众点评成都必吃菜排行榜。研究了菜品分布、人均消费、评论数量等指标,发现冰粉热度最高,口水鸡最低。并利用评论生成词云图,揭示用户关注点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景介绍:大众点评必吃榜是基于大众点评的海量用户大数据和用户实地体验验证综合评选出的美食榜单,作为必系列榜单之一力求在吃逛玩住四大领域深挖城市消费场景,为用户提供快速、高效、权威可信任的出行及消费参考,打造城市的品质生活指南。
查找方式:打开【大众点评app】—首页【必系列】——找到【必吃榜】/搜索【必吃榜】

在这里插入图片描述
由于此页面仅存在于手机版中,因此选用手机浏览器模拟方式进行数据采集,将采集到的数据导入python,进行数据分析。

import pandas as pd
import numpy as np
dishes = pd.read_csv('dish.csv',index_col=0)#成都必吃菜
#index_col=0,读取时不要生成index,因为之前按店铺排名已经生成了一个排序,如果再生成index会造成混淆
dishes.head()

在这里插入图片描述
smallten为每个品类的排名,pinlei为后期生成的品类名称,vendorname为店铺名称,price-wrap为人均消费,dishname为菜品名称,recomm为推荐人数,site为商区,dishdec为菜品评论。人均和评论均存在缺失值,按大类分析,因此将人均按每类均值进行填充,评论维持空缺。

#每个品类推荐店铺数,共31
店铺 = dishes.groupby('pinlei')['dishName'].count()
from pyecharts import Bar
bar = Bar("每个品类推荐店铺数", "成都")
bar.add("店铺数", 店铺.index, 店铺.values)

在这里插入图片描述
可以看到,大多数品类的推荐店铺数为100,成都的推荐品类共31

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值