深度学习与智能故障诊断学习笔记(一)——故障诊断体系介绍

1.引言

    智能故障诊断(IFD)是指将机器学习理论,如人工神经网络(ANN)、支持向量机(SVM)和深度神经网络(DNN)应用于机器故障诊断。这种方法利用机器学习理论,从采集的数据中自适应地学习机器的诊断知识,而不是利用工程师的经验和知识。具体而言,IFD需要构建一个诊断模型,该模型能够自动将收集的数据与机器的健康状态之间的关系连接起来。

   机器学习的早期研究可追溯到1950年,1980年左右成为了人工智能的一个重要方向,并于2010年开始得到了广泛的应用。在此期间发明了许多传统理论,如ANN、SVM、k-近邻算法(kNN)和概率图形模型(PGM)等。这些理论促进了IFD的出现,包括基于专家系统的方法、基于神经网络的方法、基于SVM的方法等。在这些方法中,故障特征是从收集的数据中人工提取,然后用故障特征来训练能够自动识别机器状态的诊断模型。在传统机器学习的帮助下,诊断模型开始建立所选特征与机器健康状态之间的关系,这削弱了人类劳动对机器故障诊断的贡献,将机器故障诊断推向了人工智能时代。

2.基于传统机器学习的之智能故障诊断

    在过去的故障诊断体系中,一些传统的机器学习理论,如ANN和SVM,被应用于机器故障诊断。诊断程序包括三个步骤,即数据收集、故障特征提取和状态识别,如图2.1所示。

图2.1

2.1数据采集

    通常数据采集的方法是将传感器安装在机器上以不断采集数据。不同的数据需要使用不同的传感器,如振动、声发射、温度和电流互感器。电流数据在电动机械的故障诊断中起着重要作用。仅使用电流互感器即可轻松收集此类数据。根据发现,来自多源传感器的数据具有互补信息,与仅使用来自单个传感器的数据相比,这些信息可以进行融合以实现更高的诊断准确率 。

2.2故障特征提取

   传统机器学习理论中故障特征提取是由人手动完成的,包括两个步骤:首先,从收集的数据中提取一些常用的特征,如时域特征、频域特征和时频域特征。这些特征包含反映机器健康状态的健康信息。其次,使用特征选择方法,如过滤器、包装器和嵌入方法,从提取的特征中选择对机器健康状态敏感的特征。这有利于去除冗余信息,进一步提高诊断效果。

2.2.1冗余信息处理

    冗余可能会增加计算成本,甚至导致维数灾难。为了削弱这一问题,一种方法是从收集的机器健康状态中选择敏感特征。它们可以分为三类,即基于过滤器、包装器和嵌入式方法。

    基于过滤器方法直接预处理收集的特征,这些特征独立于分类器的训练。

    与基于过滤器的方法不同,基于包装器的方法侧重于特征选择与训练分类器的交互作用。换句话说,分类器的性能用于评估所选特征集。如果所选特征子集不能产生最佳分类精度,则在下一次迭代中重新选择另一子集,直到所选特征以最有利的性能强制分类器。

    基于嵌入式方法将特征选择与分类器训练相结合。通常,它们在分类器的优化对象上引入正则化项,并在分类器训练完成后自动选择特征。

2.3状态识别

    健康状态识别使用基于机器学习的诊断模型来建立所选特征与机器健康状态之间的关系。为了达到这一目的,首先用标记样本对诊断模型进行训练。然后,当输入样本未标记时,模型能够识别机器的健康状态。

下一次的学习笔记将介绍几种使用传统机器学习的智能故障诊断方法(专家系统expert-system,人工神经网络ANN,支持向量机SVM以及kNN,PGM等)。

参考文献:

[1]Y. Lei, Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery, Butterworth-Heinemann Elsevier Ltd., Oxford, 2016.

[2]X. Dai, Z. Gao, From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis, IEEE Trans. Ind. Inform. 9 (2013) 2226–2238.

[3]A. Stetco, F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes, J. Keane, G. Nenadic, Machine learning methods for wind turbine conditionmonitoring: A review, Renew. Energy 133 (2019) 620–635.

[4]D.T. Hoang, H.J. Kang, A survey on deep learning based bearing fault diagnosis, Neurocomputing 335 (2019) 327–335.

[5]Z. Gao, C. Cecati, S.X. Ding, A survey of fault diagnosis and fault-tolerant techniques-part II: Fault diagnosis with knowledge-based and hybrid/activeapproaches, IEEE Trans. Ind. Electron. 62 (2015) 3768–3774.

[6]L. Duan, M. Xie, J. Wang, T. Bai, Deep learning enabled intelligent fault diagnosis: Overview and applications, J. Intell. Fuzzy Syst. 35 (2018) 5771–5784.

  • 33
    点赞
  • 255
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
好的,让我来回答你关于聚类算法的问题。 聚类算法是一种无监督学习方法,它将数据集中的对象分成若干组或者类,使得同一组内的对象之间相似度较高,而不同组之间的相似度较低。聚类算法广泛应用于数据挖掘、模式识别、图像处理、自然语言处理等领域中。 常见的聚类算法有K-Means、层次聚类、DBSCAN等。其中,K-Means算法是最常用的聚类算法之一。 K-Means算法的基本思想是:首先随机选取K个中心点(质心),然后将每个样本点归属于距离其最近的中心点所在的簇,接着重新计算每个簇的中心点,重复上述过程直到簇不再发生变化或达到预设的迭代次数。 层次聚类算法是一种基于距离的聚类算法,它将样本点视为一棵树,从下往上逐步合并相似的簇,最终形成一棵树形结构。层次聚类算法可分为自底向上的凝聚聚类和自顶向下的分裂聚类两种。自底向上的凝聚聚类从每个样本点开始,逐步合并相似的簇,最终形成一棵树形结构;自顶向下的分裂聚类从所有样本点开始,逐步将簇分裂成较小的簇,最终形成一棵树形结构。 DBSCAN算法是一种基于密度的聚类算法,它将样本点分为核心点、边界点和噪音点三类,核心点周围的样本点被划分为同一个簇,边界点则被划分到离其最近的核心点所在的簇中,而噪音点则被剔除。DBSCAN算法具有不需要预先指定聚类数、对噪音点不敏感等优点,但对于不同密度的簇,其聚类效果可能不尽如人意。 以上是聚类算法的基础知识,希望能够对你有所帮助。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值