条件随机场(CRF)相关理论知识

无向概率图模型

无向图模型的边没有方向,仅仅代表两个事件有关联。

img

无向图模型将概率分解为所有最大团上的某种函数之积。

在图论中,最大团指的是满足所有节点相互连接的最大子图。因为最大团需要考虑所有变量,为此,无向图模型定义了一些虚拟的因子节点,每个因子节点只连接部分节点,组成更小的最大团。

img

蓝色虚线表示最大团,黑色方块表因子节点,圆圈则表示变量节点。

条件随机场

条件随机场( Conditional Random Field, CRF)是一种给定输入随机变量 x,求解条件概率 p(y| x) 的概率无向图模型。用于序列标注时,特例化为线性链( linear chain )条件随机场。此时,输人输出随机变量为等长的两个序列。

线性链条件随机场如下图所示:
在这里插入图片描述

每个 Xt 上方有 3 个灰色节点,代表 Xt 的 3 个特征,当然还可以是任意数量的特征,体现了特征的丰富性。黑色方块是因子节点,可以理解为一个特征函数 。其中仅仅利用了 Xt 和 Yt 的特征称作状态特征(s),利用了 Yt-1 的特征则称作转移特征(t)

**状态特征(s)**是定义在Y节点上的节点特征函数,这类特征函数只和当前节点有关,记为:
s l ( y i , x , i ) ,      l = 1 , 2 , . . . L s_l(y_i, x,i),\;\; l =1,2,...L sl(yi,x,i),l=1,2,...L
其中L是定义在该节点的节点特征函数的总个数,ii是当前节点在序列的位置。

**转移特征(t)**是定义在Y上下文的局部特征函数,这类特征函数只和当前节点和上一个节点有关,记为:
t k ( y i − 1 , y i , x , i ) ,      k = 1 , 2 , . . . K t_k(y_{i-1},y_i, x,i),\;\; k =1,2,...K tk(yi1,yi,x,i),k=1,2,...K
其中K是定义在该节点的局部特征函数的总个数,i是当前节点在序列的位置。之所以只有上下文相关的局部特征函数,没有不相邻节点之间的特征函数,是因为我们的linear-CRF满足马尔科夫性。

无论是节点特征函数还是局部特征函数,它们的取值只能是0或者1。即满足特征条件或者不满足特征条件。同时,我们可以为每个特征函数赋予一个权值,用以表达我们对这个特征函数的信任度。假设 t k t_k tk的权重系数是 λ k , s l \lambda_k, s_l λk,sl的权重系数是 μ l \mu_l μl,则linear-CRF由我们所有的 t k , λ k , s , μ l t_k,\lambda_k, s_,\mu_l tk,λk,s,μl共同决定。

此时我们得到了linear-CRF的参数化形式如下:
P ( y ∣ x ) = 1 Z ( x ) e x p ( ∑ i , k λ k t k ( y i − 1 , y i , x , i ) + ∑ i , l μ l s l ( y i , x , i ) ) P(y|x) = \frac{1}{Z(x)}exp\Big(\sum\limits_{i,k} \lambda_kt_k(y_{i-1},y_i, x,i) +\sum\limits_{i,l}\mu_ls_l(y_i, x,i)\Big) P(yx)=Z(x)1exp(i,kλktk(yi1,yi,x,i)+i,lμlsl(yi,x,i))
其中,Z(x)为规范化因子:
Z ( x ) = ∑ y e x p ( ∑ i , k λ k t k ( y i − 1 , y i , x , i ) + ∑ i , l μ l s l ( y i , x , i ) ) Z(x) =\sum\limits_{y} exp\Big(\sum\limits_{i,k} \lambda_kt_k(y_{i-1},y_i, x,i) +\sum\limits_{i,l}\mu_ls_l(y_i, x,i)\Big) Z(x)=yexp(i,kλktk(yi1,yi,x,i)+i,lμlsl(yi,x,i))
回到特征函数本身,每个特征函数定义了一个linear-CRF的规则,则其系数定义了这个规则的可信度。所有的规则和其可信度一起构成了我们的linear-CRF的最终的条件概率分布。

CRF 实例

这里我们给出一个linear-CRF用于词性标注的实例,为了方便,我们简化了词性的种类。假设输入的都是三个词的句子,即 X = ( X 1 , X 2 , X 3 ) X=(X_1,X_2,X_3) X=(X1,X2,X3),输出为 Y = ( Y 1 , Y 2 , Y 3 ) Y=(Y_1,Y_2,Y_3) Y=(Y1,Y2,Y3),其中, Y ∈ { 1 ( 名 词 ) , 2 ( 动 词 ) } Y \in \{1(名词),2(动词)\} Y{1()2()},则Y的可能输出序列 对应的线性链条件随机场结构 如下图所示:

在这里插入图片描述
给定取值为1的特征函数如下:
t 1 = t 1 ( y i − 1 = 1 , y i = 2 , x , i ) , i = 2 , 3 ,      λ 1 = 1 t 2 = t 2 ( y 1 = 1 , y 2 = 1 , x , 2 )      λ 2 = 0.5 t 3 = t 3 ( y 2 = 2 , y 3 = 1 , x , 3 )      λ 3 = 1 t 4 = t 4 ( y 1 = 2 , y 2 = 1 , x , 2 )      λ 4 = 1 t 5 = t 5 ( y 2 = 2 , y 3 = 2 , x , 3 )      λ 5 = 0.2 s 1 = s 1 ( y 1 = 1 , x , 1 )      μ 1 = 1 s 2 = s 2 ( y i = 2 , x , i ) , i = 1 , 2 ,      μ 2 = 0.5 s 3 = s 3 ( y i = 1 , x , i ) , i = 2 , 3 ,      μ 3 = 0.8 s 4 = s 4 ( y 3 = 2 , x , 3 )      μ 4 = 0.5 t_1 =t_1(y_{i-1} = 1, y_i =2,x,i), i =2,3,\;\;\lambda_1=1\\ t_2 =t_2(y_1=1,y_2=1,x,2)\;\;\lambda_2=0.5\\ t_3 =t_3(y_2=2,y_3=1,x,3)\;\;\lambda_3=1\\ t_4 =t_4(y_1=2,y_2=1,x,2)\;\;\lambda_4=1\\ t_5 =t_5(y_2=2,y_3=2,x,3)\;\;\lambda_5=0.2\\ s_1 =s_1(y_1=1,x,1)\;\;\mu_1 =1\\ s_2 =s_2( y_i =2,x,i), i =1,2,\;\;\mu_2=0.5\\ s_3 =s_3( y_i =1,x,i), i =2,3,\;\;\mu_3=0.8\\ s_4 =s_4(y_3=2,x,3)\;\;\mu_4 =0.5 t1=t1(yi1=1,yi=2,x,i),i=2,3,λ1=1t2=t2(y1=1,y2=1,x,2)λ2=0.5t3=t3(y2=2,y3=1,x,3)λ3=1t4=t4(y1=2,y2=1,x,2)λ4=1t5=t5(y2=2,y3=2,x,3)λ5=0.2s1=s1(y1=1,x,1)μ1=1s2=s2(yi=2,x,i),i=1,2,μ2=0.5s3=s3(yi=1,x,i),i=2,3,μ3=0.8s4=s4(y3=2,x,3)μ4=0.5
目标是求标记序列 ( y 1 = 1 , y 2 = 2 , y 3 = 2 ) (y_1=1,y_2=2,y_3=2) (y1=1,y2=2,y3=2)的非规范化概率。

简单解释上面的特征函数:

t 2 t_2 t2函数表示输入的第一个y必须是 y 1 y_1 y1且等于1,第二个y必须是 y 2 y_2 y2且为1。当输入的两个y满足这两个条件事,函数取值为1,否则取值为0(例如: t 2 ( y 1 = 1 , y 2 = 2 , x , 2 ) = 0 t_2 (y_1=1,y_2=2,x,2)=0 t2(y1=1,y2=2,x,2)=0)。当 t 2 t_2 t2取值为1时, t 2 t_{2} t2对应的置信度为0.5。

t 1 t_1 t1函数表示输入的第一个y是1且第二个y是2时才取1,否则取0。 t 1 t_1 t1取1时,则 t 1 t_1 t1对应的概率为1。

s 1 s_1 s1函数表示输入的y必须是 y 1 y_1 y1且等于1,此时 s 1 s_1 s1的置信度为 μ 1 \mu_1 μ1

其他的特征函数以此类推。

更具体的理解是:

t函数给定并约束了不同词性之间的转移概率,例如约定名词后接动词的概率为1,名词后面跟名词的概率为0.5;

s函数给定并约束了第i个位置为某个词性的概率,例如第一个字为名词的概率为1,第一个第二个字为动词的概率为0.5;

利用linear-CRF的参数化公式,我们有:
P ( y ∣ x ) ∝ e x p [ ∑ k = 1 5 λ k ∑ i = 2 3 t k ( y i − 1 , y i , x , i ) + ∑ l = 1 4 μ l ∑ i = 1 3 s l ( y i , x , i ) ] P(y|x) \propto exp\Big[\sum\limits_{k=1}^5\lambda_k\sum\limits_{i=2}^3t_k(y_{i-1},y_i, x,i) + \sum\limits_{l=1}^4\mu_l\sum\limits_{i=1}^3s_l(y_i, x,i) \Big] P(yx)exp[k=15λki=23tk(yi1,yi,x,i)+l=14μli=13sl(yi,x,i)]
注意上面的式子中的 ∑ i = 2 3 \sum\limits_{i=2}^3 i=23和$ \sum\limits_{i=1}^3$,意味着所有的特征函数会遍历每一个可能的点和边。

带入 ( y 1 = 1 , y 2 = 2 , y 3 = 2 ) (y_1=1,y_2=2,y_3=2) (y1=1,y2=2,y3=2)后展开,得到:
P ( y 1 = 1 , y 2 = 2 , y 3 = 2 ∣ x ) ∝ e x p ( 3.2 ) P(y_1=1,y_2=2,y_3=2|x) \propto exp(3.2) P(y1=1,y2=2,y3=2x)exp(3.2)

线性链条件随机场的简化形式

假设我们有 K 1 K_1 K1个转移特征t, K 2 K_2 K2个状态特征s,总共有 K = K 1 + K 2 K=K_1 + K_2 K=K1+K2个特征。并且令:

f k ( y i − 1 , y i , x , i ) = { t k ( y i − 1 , y i , x , i ) , k = 1 , 2 , … , K 1 s l ( y i , x , i ) , k = K 1 + l ; l = 1 , 2 , … , K 2 f_k(y_{i-1},y_i,x,i)= \begin{cases} t_k(y_{i-1},y_i,x,i),&k=1,2,\dots,K_1\\ s_l(y_i,x,i),&k=K_1+l;l=1,2,\dots,K_2 \end{cases} fk(yi1,yi,x,i)={tk(yi1,yi,x,i),sl(yi,x,i),k=1,2,,K1k=K1+l;l=1,2,,K2
然后对两种特征函数在各个位置 i i i求和,得到:
f k ( y , x ) = ∑ i = 1 n f k ( y i − 1 , y i , x , i ) , k = 1 , 2 , … , K f_k(y,x)=\sum_{i=1}^nf_k(y_{i-1},y_i,x,i),k=1,2,\dots,K fk(y,x)=i=1nfk(yi1,yi,x,i),k=1,2,,K
同时我们也统一 f k ( y i − 1 , y i , x , i ) f_k(y_{i-1},y_i, x,i) fk(yi1,yi,x,i)对应的权重系数 w k w_{k} wk如下:
w k = { λ k , k = 1 , 2 , … , K 1 μ l , k = K 1 + l ; l = 1 , 2 , … , K 2 w_k= \begin{cases} \lambda_k,&k=1,2,\dots,K_1\\ \mu_l,&k=K1+l;l=1,2,\dots,K_2 \end{cases} wk={λk,μl,k=1,2,,K1k=K1+l;l=1,2,,K2
于是条件随机场可以表示为
P ( y ∣ x ) = 1 Z ( x ) exp ⁡ ∑ k = 1 K w k f k ( y , x ) Z ( x ) = ∑ y exp ⁡ ∑ k = 1 K w k f k ( y , x ) \begin{aligned} P(y|x)&=\frac{1}{Z(x)}\exp\sum_{k=1}^Kw_kf_k(y,x)\\ Z(x)&=\sum_y\exp\sum_{k=1}^Kw_kf_k(y,x) \end{aligned} P(yx)Z(x)=Z(x)1expk=1Kwkfk(y,x)=yexpk=1Kwkfk(y,x)
其中 Z ( x ) Z(x) Z(x)为规范化因子。

若以 w w w表示权值向量, 即
w = ( w 1 , w 2 , … , w K ) T w=(w_1,w_2,\dots,w_K)^T w=(w1,w2,,wK)T
F F F表示全局特征向量,即
F ( y , x ) = ( f 1 ( y , x ) , f 2 ( y , x ) , … , f K ( y , x ) ) T F(y,x)=(f_1(y,x),f_2(y,x),\dots,f_K(y,x))^T F(y,x)=(f1(y,x),f2(y,x),,fK(y,x))T
条件随机场可以表示成向量内积的形式
P w ( y ∣ x ) = exp ⁡ ( w ⋅ F ( y , x ) ) Z w ( x ) Z w ( x ) = ∑ y exp ⁡ ( w ⋅ F ( y , x ) ) \begin{aligned} P_w(y|x)&=\frac{\exp(w\cdot F(y,x))}{Z_w(x)}\\ Z_w(x)&=\sum_y\exp\left(w\cdot F(y,x)\right) \end{aligned} Pw(yx)Zw(x)=Zw(x)exp(wF(y,x))=yexp(wF(y,x))
以上便得到了向量形式的表示。

线性链条件随机场的矩阵形式

上面的表示形式还可以再加以整理,变为矩阵的形式。为此定义一个 m × m m\times m m×m的矩阵M,m为y所有可能状态的个数。M定义如下:
M i ( x ) = [ M i ( y i − 1 , y i ∣ x ) ] M i ( y i − 1 , y i ) = exp ⁡ ( W i ( y i − 1 , y i ∣ x ) ) W i ( y i − 1 , y i ∣ x ) = ∑ k = 1 K w k f k ( y i − 1 , y i ∣ x ) \begin{aligned} M_i(x)&=\left[M_i(y_{i-1},y_i|x)\right]\\ M_i(y_{i-1},y_i)&=\exp\left(W_i(y_{i-1},y_i|x)\right)\\ W_i(y_{i-1},y_i|x)&=\sum_{k=1}^Kw_kf_k(y_{i-1},y_i|x) \end{aligned} Mi(x)Mi(yi1,yi)Wi(yi1,yix)=[Mi(yi1,yix)]=exp(Wi(yi1,yix))=k=1Kwkfk(yi1,yix)
M i ( x ) M_i(x) Mi(x) m × m m\times m m×m的矩阵,对上文提到的实例而言,M为2x2的矩阵。角标i表示是第i个位置的矩阵。

M i ( y i − 1 , y i ) M_i(y_{i-1},y_i) Mi(yi1,yi)是构成矩阵 M i ( x ) M_i(x) Mi(x)的元素,其在矩阵中的位置为: ( y i − 1 , y i ) (y_{i-1}, y_i) (yi1,yi)。例如 ( y i − 1 = 1 , y i = 2 ) (y_{i-1}=1, y_i=2) (yi1=1,yi=2)表示是矩阵第一行,第二列的位置,且取值为: exp ⁡ ( W i ( y i − 1 = 1 , y i = 2 ∣ x ) ) \exp\left(W_i(y_{i-1}=1,y_i=2|x)\right) exp(Wi(yi1=1,yi=2x))

引入起点和终点状态标记 y 0 = s t a r t = 1 , y n + 1 = e n d = 1 y_0=start=1,y_{n+1}=end=1 y0=start=1,yn+1=end=1, 则有下图所示的状态路径:
在这里插入图片描述
这时 P w ( y ∣ x ) P_w(y|x) Pw(yx)可以矩阵形式表示:
P w ( y ∣ x ) = 1 Z w ( x ) ∏ i = 1 n + 1 M i ( y i − 1 , y i ∣ x ) Z w ( x ) = ( M 1 ( x ) M 2 ( x ) … M n + 1 ( x ) ) s t a r t , s t o p P_w(y|x)=\frac{1}{Z_w(x)}\prod_{i=1}^{n+1}M_i(y_{i-1},y_i|x) \\ Z_w(x)=(M_1(x)M_2(x)\dots M_{n+1}(x))_{start,stop} Pw(yx)=Zw(x)1i=1n+1Mi(yi1,yix)Zw(x)=(M1(x)M2(x)Mn+1(x))start,stop
其中 Z w ( x ) Z_w(x) Zw(x)为规范化因子,是n+1个矩阵乘积结果在(start=1,stop=1)位置上的元素,也就是计算结果对应的矩阵在左上角位置的元素值。

为什么是n+1个矩阵?因为从start到stop之间有 n + 1 = 3 + 1 = 4 n+1=3+1=4 n+1=3+1=4个转移状态:
M 1 ( y 0 , y 1 ) , M 2 ( y 1 , y 2 ) , M 3 ( y 2 , y 3 ) , M 4 ( y 3 , y 4 ) M_1(y_0,y_1),M_2(y_1,y_2),M_3(y_2,y_3),M_4(y_3,y_4) M1(y0,y1),M2(y1,y2),M3(y2,y3),M4(y3,y4)
回顾之前做的例题,有观测序列 x x x,状态序列 y , i = 1 , 2 , 3 , n = 3 y,i=1,2,3, n=3 y,i=1,2,3,n=3,标记 y i ∈ { 1 , 2 } y_i\in\{1,2\} yi{1,2},假设 y 0 = s t a r t = 1 , y 4 = s t o p = 1 y_0=start=1,y_4=stop=1 y0=start=1,y4=stop=1,各个位置的随机矩阵(可以理解为状态转移矩阵)为:
M 1 ( x ) = [ a 11 a 12 0 0 ] , M 2 ( x ) = [ b 11 b 12 b 21 b 22 ] M 3 ( x ) = [ c 11 c 12 c 21 c 22 ] , M 4 ( x ) = [ 1 0 1 0 ] \begin{aligned} M_1(x)= \begin{bmatrix} &a_{11}&a_{12}\\ &0&0 \end{bmatrix} &,M_2(x)= \begin{bmatrix} &b_{11}&b_{12}\\ &b_{21}&b_{22} \end{bmatrix} \\ M_3(x)= \begin{bmatrix} &c_{11}&c_{12}\\ &c_{21}&c_{22} \end{bmatrix} &,M_4(x)= \begin{bmatrix} &1&0\\ &1&0 \end{bmatrix} \end{aligned} M1(x)=[a110a120]M3(x)=[c11c21c12c22],M2(x)=[b11b21b12b22],M4(x)=[1100]
其中:
M i ( x ) = [ exp ⁡ ( ∑ k = 1 K w k f k ( y i − 1 , y i ∣ x ) ) ] , i = 1 , 2 , … , n + 1 M_i(x)=\left[\exp\left(\sum_{k=1}^Kw_kf_k(y_{i-1},y_i|x)\right)\right], i=1,2,\dots,n+1 Mi(x)=[exp(k=1Kwkfk(yi1,yix))],i=1,2,,n+1
例如 M 1 ( x ) M_1(x) M1(x)
M 1 ( x ) = [ a 11 = exp ⁡ ( ∑ k = 1 K w k f k ( y 0 = 1 , y 1 = 1 ∣ x ) ) a 12 = exp ⁡ ( ∑ k = 1 K w k f k ( y 0 = 1 , y 1 = 2 ∣ x ) ) a 21 = exp ⁡ ( ∑ k = 1 K w k f k ( y 0 = 2 , y 1 = 1 ∣ x ) ) a 22 = exp ⁡ ( ∑ k = 1 K w k f k ( y 0 = 2 , y 2 = 1 ∣ x ) ) ] M_1(x)= \begin{bmatrix} &a_{11} =\exp\left(\sum_{k=1}^Kw_kf_k(y_{0}=1,y_1=1|x)\right)&a_{12}=\exp\left(\sum_{k=1}^Kw_kf_k(y_{0}=1,y_1=2|x)\right)\\ &a_{21}=\exp\left(\sum_{k=1}^Kw_kf_k(y_{0}=2,y_1=1|x)\right)&a_{22}=\exp\left(\sum_{k=1}^Kw_kf_k(y_{0}=2,y_2=1|x)\right) \end{bmatrix} M1(x)=a11=exp(k=1Kwkfk(y0=1,y1=1x))a21=exp(k=1Kwkfk(y0=2,y1=1x))a12=exp(k=1Kwkfk(y0=1,y1=2x))a22=exp(k=1Kwkfk(y0=2,y2=1x))
显然, a 21 , a 22 a_{21}, a_{22} a21,a22为0。

将上述矩阵相乘:
∏ i = 1 4 M i ( y i − 1 , y i ∣ x ) \prod_{i=1}^{4}M_i(y_{i-1},y_i|x) i=14Mi(yi1,yix)
可以得到各个路径的非规范化概率为:
a 11 b 11 c 11 , a 11 b 11 c 12 , a 11 b 12 c 21 , a 11 b 12 c 22 , a 12 b 21 c 11 , a 12 b 21 c 12 , a 12 b 22 c 21 , a 12 b 22 c 22 , a_{11}b_{11}c_{11},\quad a_{11}b_{11}c_{12},\quad a_{11}b_{12}c_{21},\quad a_{11}b_{12}c_{22},\quad \\ a_{12}b_{21}c_{11},\quad a_{12}b_{21}c_{12},\quad a_{12}b_{22}c_{21},\quad a_{12}b_{22}c_{22},\quad a11b11c11,a11b11c12,a11b12c21,a11b12c22,a12b21c11,a12b21c12,a12b22c21,a12b22c22,
规范化因子,即最终计算结果左上角的元素,为:
a 11 b 11 c 11 + a 11 b 11 c 12 + a 11 b 12 c 21 + a 11 b 12 c 22 + a 12 b 21 c 11 + a 12 b 21 c 12 + a 12 b 22 c 21 + a 12 b 22 c 22 a_{11}b_{11}c_{11}+ a_{11}b_{11}c_{12}+ a_{11}b_{12}c_{21}+ a_{11}b_{12}c_{22}+ \\ a_{12}b_{21}c_{11}+ a_{12}b_{21}c_{12}+ a_{12}b_{22}c_{21}+ a_{12}b_{22}c_{22} a11b11c11+a11b11c12+a11b12c21+a11b12c22+a12b21c11+a12b21c12+a12b22c21+a12b22c22

linear-CRF的三个基本问题

1,概率计算问题

即给定 linear-CRF的条件概率分布P(y|x), 在给定输入序列x和输出序列y时,计算条件概率 P ( y i ∣ x ) P(y_i|x) P(yix) P ( y i − 1 , y i ∣ x ) P(y_i−1,y_i|x) P(yi1yix)以及对应的期望。

前向后向概率概述

要计算条件概率 P ( y i ∣ x ) P(y_i|x) P(yix) P ( y i − 1 , y i ∣ x ) P(y_{i-1},y_i|x) P(yi1yix),可以使用前向后向算法来完成。

前向概率

定义 α i ( y i ∣ x ) \alpha_i(y_i|x) αi(yix)表示序列位置i的标记是 y i y_i yi时,在位置i之前的部分标记序列的非规范化概率。

而我们在上面定义了:
M i ( y i − 1 , y i ∣ x ) = e x p ( ∑ k = 1 K w k f k ( y i − 1 , y i , x , i ) ) M_i(y_{i-1},y_i |x) = exp(\sum\limits_{k=1}^Kw_kf_k(y_{i-1},y_i, x,i)) Mi(yi1,yix)=exp(k=1Kwkfk(yi1,yi,x,i))
用于计算在给定 y i − 1 y_{i-1} yi1时,从 y i − 1 y_{i-1} yi1转移到 y i y_i yi的非规范化概率。

那么在得知在位置 i + 1 i+1 i+1处标记为 y i + 1 y_{i+1} yi+1时,位置 i + 1 i+1 i+1之前的标记序列非规范化概率 α i + 1 ( y i + 1 ∣ x ) \alpha_{i+1}(y_{i+1}|x) αi+1(yi+1x)的递推公式:
α i + 1 ( y i + 1 ∣ x ) = α i ( y i ∣ x ) M i + 1 ( y i + 1 , y i ∣ x )      i = 1 , 2 , . . . , n + 1 \alpha_{i+1}(y_{i+1}|x) = \alpha_i(y_i|x)M_{i+1}(y_{i+1},y_i|x) \;\; i=1,2,...,n+1 αi+1(yi+1x)=αi(yix)Mi+1(yi+1,yix)i=1,2,...,n+1
特别的,在起点处,我们令:
α 0 ( y 0 ∣ x ) = { 1 y 0 = s t a r t 0 e l s e \alpha_0(y_0|x)= \begin{cases} 1 & {y_0 =start}\\ 0 & {else} \end{cases} α0(y0x)={10y0=startelse
由于在位置 i + 1 i+1 i+1处, y i + 1 y_{i+1} yi+1的可能取值有m种,我们用 α i ( x ) \alpha_i(x) αi(x)表示这m个可能取值对应的前向向量:
α i ( x ) = ( α i ( y i = 1 ∣ x ) , α i ( y i = 2 ∣ x ) , . . . α i ( y i = m ∣ x ) ) T \alpha_i(x) = (\alpha_i(y_i=1|x), \alpha_i(y_i=2|x), ... \alpha_i(y_i=m|x))^T αi(x)=(αi(yi=1x),αi(yi=2x),...αi(yi=mx))T
则递推公式可以表示为:
α i + 1 T ( x ) = α i T ( x ) M i + 1 ( x ) \alpha_{i+1}^T(x) = \alpha_i^T(x)M_{i+1}(x) αi+1T(x)=αiT(x)Mi+1(x)
后向概率

同样定义 β i ( y i ∣ x ) \beta_i(y_i|x) βi(yix)表示序列位置i的标记是 y i y_i yi时,在位置i之后的部分(i+1到n的部分)标记序列的非规范化概率。

那么在得知 i + 1 i+1 i+1处标记为 y ( i + 1 ) y_(i+1) y(i+1)时,位置i之后的部分标记序列的非规范化概率 β i ( y i ∣ x ) \beta_i(y_i|x) βi(yix)的递推公式:
β i ( y i ∣ x ) = M i + 1 ( y i , y i + 1 ∣ x ) β i + 1 ( y i + 1 ∣ x ) \beta_{i}(y_{i}|x) = M_{i+1}(y_i,y_{i+1}|x)\beta_{i+1}(y_{i+1}|x) βi(yix)=Mi+1(yi,yi+1x)βi+1(yi+1x)
特别的,在终点处定义:
β n + 1 ( y n + 1 ∣ x ) = { 1 y n + 1 = s t o p 0 e l s e \beta_{n+1}(y_{n+1}|x)= \begin{cases} 1 & {y_{n+1} =stop}\\ 0 & {else} \end{cases} βn+1(yn+1x)={10yn+1=stopelse
如果用向量表示则有:
β i ( x ) = M i + 1 ( x ) β i + 1 ( x ) \beta_i(x) = M_{i+1}(x)\beta_{i+1}(x) βi(x)=Mi+1(x)βi+1(x)
规范化因子 Z ( x ) Z(x) Z(x)的表达式为:
Z ( x ) = ∑ c = 1 m α n ( y c ∣ x ) = ∑ c = 1 m β 1 ( y c ∣ x ) Z(x) = \sum\limits_{c=1}^m\alpha_{n}(y_c|x) = \sum\limits_{c=1}^m\beta_{1}(y_c|x) Z(x)=c=1mαn(ycx)=c=1mβ1(ycx)
向量化的表示为:
Z ( x ) = α n T ( x ) ∙ 1 = 1 T ∙ β 1 ( x ) Z(x) = \alpha_{n}^T(x) \bullet \mathbf{1} = \mathbf{1}^T \bullet \beta_{1}(x) Z(x)=αnT(x)1=1Tβ1(x)
其中,1是m维全1向量。

前向后向概率计算

有了前向后向概率的定义和计算方法,我们就很容易计算序列位置i的标记是 y i y_i yi时的条件概率 P ( y i ∣ x ) P(y_i|x) P(yix)
P ( y i ∣ x ) = α i T ( y i ∣ x ) β i ( y i ∣ x ) Z ( x ) = α i T ( y i ∣ x ) β i ( y i ∣ x ) α n T ( x ) ∙ 1 P(y_i|x) = \frac{\alpha_i^T(y_i|x)\beta_i(y_i|x)}{Z(x)} = \frac{\alpha_i^T(y_i|x)\beta_i(y_i|x)}{ \alpha_{n}^T(x) \bullet \mathbf{1}} P(yix)=Z(x)αiT(yix)βi(yix)=αnT(x)1αiT(yix)βi(yix)
也容易计算序列位置i的标记是 y i y_i yi,位置 i − 1 i-1 i1的标记是 y i − 1 y_{i-1} yi1时的条件概率 P ( y i − 1 , y i ∣ x ) P(y_{i-1},y_i|x) P(yi1,yix):
P ( y i − 1 , y i ∣ x ) = α i − 1 T ( y i − 1 ∣ x ) M i ( y i − 1 , y i ∣ x ) β i ( y i ∣ x ) Z ( x ) = α i − 1 T ( y i − 1 ∣ x ) M i ( y i − 1 , y i ∣ x ) β i ( y i ∣ x ) α n T ( x ) ∙ 1 \begin{aligned} P(y_{i-1},y_i|x) &= \frac{\alpha_{i-1}^T(y_{i-1}|x)M_i(y_{i-1},y_i|x)\beta_i(y_i|x)}{Z(x)} \\ &= \frac{\alpha_{i-1}^T(y_{i-1}|x)M_i(y_{i-1},y_i|x)\beta_i(y_i|x)}{ \alpha_{n}^T(x) \bullet \mathbf{1}} \end{aligned} P(yi1,yix)=Z(x)αi1T(yi1x)Mi(yi1,yix)βi(yix)=αnT(x)1αi1T(yi1x)Mi(yi1,yix)βi(yix)

linear-CRF的期望计算

有了上一节计算的条件概率,我们也可以很方便的计算联合分布 P ( x , y ) P(x,y) P(x,y)与条件分布 P ( y ∣ x ) P(y|x) P(yx)的期望。

特征函数 f k ( x , y ) f_k(x,y) fk(x,y)关于条件分布 P ( y ∣ x ) P(y|x) P(yx)的期望表达式是:
E P ( y ∣ x ) [ f k ] = E P ( y ∣ x ) [ f k ( y , x ) ] = ∑ i = 1 n + 1 ∑ y i − 1      y i P ( y i − 1 , y i ∣ x ) f k ( y i − 1 , y i , x , i ) = ∑ i = 1 n + 1 ∑ y i − 1      y i f k ( y i − 1 , y i , x , i ) α i − 1 T ( y i − 1 ∣ x ) M i ( y i − 1 , y i ∣ x ) β i ( y i ∣ x ) α n T ( x ) ∙ 1 \begin{aligned} E_{P(y|x)}[f_k] & = E_{P(y|x)}[f_k(y,x)] \\ & = \sum\limits_{i=1}^{n+1} \sum\limits_{y_{i-1}\;\;y_i}P(y_{i-1},y_i|x)f_k(y_{i-1},y_i,x, i) \\ & = \sum\limits_{i=1}^{n+1} \sum\limits_{y_{i-1}\;\;y_i}f_k(y_{i-1},y_i,x, i) \frac{\alpha_{i-1}^T(y_{i-1}|x)M_i(y_{i-1},y_i|x)\beta_i(y_i|x)}{ \alpha_{n}^T(x) \bullet \mathbf{1}} \end{aligned} EP(yx)[fk]=EP(yx)[fk(y,x)]=i=1n+1yi1yiP(yi1,yix)fk(yi1,yi,x,i)=i=1n+1yi1yifk(yi1,yi,x,i)αnT(x)1αi1T(yi1x)Mi(yi1,yix)βi(yix)
同样可以计算联合分布 P ( x , y ) P(x,y) P(x,y)的期望:
E P ( x , y ) [ f k ] = ∑ x , y P ( x , y ) ∑ i = 1 n + 1 f k ( y i − 1 , y i , x , i ) = ∑ x P ‾ ( x ) ∑ y P ( y ∣ x ) ∑ i = 1 n + 1 f k ( y i − 1 , y i , x , i ) = ∑ x P ‾ ( x ) ∑ i = 1 n + 1 ∑ y i − 1      y i f k ( y i − 1 , y i , x , i ) α i − 1 T ( y i − 1 ∣ x ) M i ( y i − 1 , y i ∣ x ) β i ( y i ∣ x ) α n T ( x ) ∙ 1 \begin{aligned} E_{P(x,y)}[f_k] & = \sum\limits_{x,y}P(x,y) \sum\limits_{i=1}^{n+1}f_k(y_{i-1},y_i,x, i) \\& = \sum\limits_{x}\overline{P}(x) \sum\limits_{y}P(y|x) \sum\limits_{i=1}^{n+1}f_k(y_{i-1},y_i,x, i) \\& = \sum\limits_{x}\overline{P}(x)\sum\limits_{i=1}^{n+1} \sum\limits_{y_{i-1}\;\;y_i}f_k(y_{i-1},y_i,x, i) \frac{\alpha_{i-1}^T(y_{i-1}|x)M_i(y_{i-1},y_i|x)\beta_i(y_i|x)}{ \alpha_{n}^T(x) \bullet \mathbf{1}} \end{aligned} EP(x,y)[fk]=x,yP(x,y)i=1n+1fk(yi1,yi,x,i)=xP(x)yP(yx)i=1n+1fk(yi1,yi,x,i)=xP(x)i=1n+1yi1yifk(yi1,yi,x,i)αnT(x)1αi1T(yi1x)Mi(yi1,yix)βi(yix)
假设一共有K个特征函数,则 k = 1 , 2 , . . . K k=1,2,...K k=1,2,...K

2,学习问题

在linear-CRF模型参数学习问题中,我们给定训练数据集X和对应的标记序列Y,K个特征函数 f k ( x , y ) f_k(x,y) fk(x,y),需要学习linear-CRF的模型参数 w k w_k wk和条件概率 P w ( y ∣ x ) P_w(y|x) Pw(yx),其中条件概率 P w ( y ∣ x ) P_w(y|x) Pw(yx)和模型参数 w k w_k wk满足以下关系:
P w ( y ∣ x ) = P ( y ∣ x ) = 1 Z w ( x ) e x p ∑ k = 1 K w k f k ( x , y ) = e x p ∑ k = 1 K w k f k ( x , y ) ∑ y e x p ∑ k = 1 K w k f k ( x , y ) P_w(y|x) = P(y|x) = \frac{1}{Z_w(x)}exp\sum\limits_{k=1}^Kw_kf_k(x,y) = \frac{exp\sum\limits_{k=1}^Kw_kf_k(x,y)}{\sum\limits_{y}exp\sum\limits_{k=1}^Kw_kf_k(x,y)} Pw(yx)=P(yx)=Zw(x)1expk=1Kwkfk(x,y)=yexpk=1Kwkfk(x,y)expk=1Kwkfk(x,y)
所以我们的目标就是求出所有的模型参数 w k w_k wk,这样条件概率 P w ( y ∣ x ) P_w(y|x) Pw(yx)可以从上式计算出来。

梯度下降法

在使用梯度下降法求解模型参数之前,我们需要定义我们的优化函数,一般极大化条件分布 P w ( y ∣ x ) P_w(y|x) Pw(yx)的对数似然函数如下:
L ( w ) = l o g ∏ x , y P w ( y ∣ x ) P ‾ ( x , y ) = ∑ x , y P ‾ ( x , y ) l o g P w ( y ∣ x ) L(w)= log\prod_{x,y}P_w(y|x)^{\overline{P}(x,y)} = \sum\limits_{x,y}\overline{P}(x,y)logP_w(y|x) L(w)=logx,yPw(yx)P(x,y)=x,yP(x,y)logPw(yx)
其中 P ‾ ( x , y ) \overline{P}(x,y) P(x,y)为经验分布,可以从先验知识和训练集样本中得到,这点和最大熵模型类似。为了使用梯度下降法,我们现在极小化 f ( w ) = − L ( P w ) f(w) = -L(P_w) f(w)=L(Pw)如下:
f ( w ) = − ∑ x , y P ‾ ( x , y ) l o g P w ( y ∣ x ) = ∑ x , y P ‾ ( x , y ) l o g Z w ( x ) − ∑ x , y P ‾ ( x , y ) ∑ k = 1 K w k f k ( x , y ) = ∑ x P ‾ ( x ) l o g Z w ( x ) − ∑ x , y P ‾ ( x , y ) ∑ k = 1 K w k f k ( x , y ) = ∑ x P ‾ ( x ) l o g ∑ y e x p ∑ k = 1 K w k f k ( x , y ) − ∑ x , y P ‾ ( x , y ) ∑ k = 1 K w k f k ( x , y ) \begin{aligned}f(w) & = -\sum\limits_{x,y}\overline{P}(x,y)logP_w(y|x) \\ &= \sum\limits_{x,y}\overline{P}(x,y)logZ_w(x) - \sum\limits_{x,y}\overline{P}(x,y)\sum\limits_{k=1}^Kw_kf_k(x,y) \\& = \sum\limits_{x}\overline{P}(x)logZ_w(x) - \sum\limits_{x,y}\overline{P}(x,y)\sum\limits_{k=1}^Kw_kf_k(x,y) \\& = \sum\limits_{x}\overline{P}(x)log\sum\limits_{y}exp\sum\limits_{k=1}^Kw_kf_k(x,y) - \sum\limits_{x,y}\overline{P}(x,y)\sum\limits_{k=1}^Kw_kf_k(x,y) \end{aligned} f(w)=x,yP(x,y)logPw(yx)=x,yP(x,y)logZw(x)x,yP(x,y)k=1Kwkfk(x,y)=xP(x)logZw(x)x,yP(x,y)k=1Kwkfk(x,y)=xP(x)logyexpk=1Kwkfk(x,y)x,yP(x,y)k=1Kwkfk(x,y)
对w求导可以得到:
∂ f ( w ) ∂ w = ∑ x , y P ‾ ( x ) P w ( y ∣ x ) f ( x , y ) − ∑ x , y P ‾ ( x , y ) f ( x , y ) \frac{\partial f(w)}{\partial w} = \sum\limits_{x,y}\overline{P}(x)P_w(y|x)f(x,y) - \sum\limits_{x,y}\overline{P}(x,y)f(x,y) wf(w)=x,yP(x)Pw(yx)f(x,y)x,yP(x,y)f(x,y)
有了w的导数表达式,就可以用梯度下降法来迭代求解最优的w了。注意在迭代过程中,每次更新w后,需要同步更新 P w ( x , y ) P_w(x,y) Pw(x,y)以用于下一次迭代的梯度计算。

拟牛顿法

条件随机场模型的学习通过拟牛顿法进行。

CRF的模型:
P ( y ∣ x ) = 1 Z ( x ) exp ⁡ ∑ i = 1 n w i f i ( y , x ) Z ( x ) = ∑ y exp ⁡ ∑ i = 1 n w i f i ( y , x ) \begin{aligned}P(y|x)&=\frac{1}{Z(x)}\exp\sum_{i=1}^nw_if_i(y,x)\\Z(x)&=\sum_y\exp\sum_{i=1}^nw_if_i(y,x)\end{aligned} P(yx)Z(x)=Z(x)1expi=1nwifi(y,x)=yexpi=1nwifi(y,x)
已知训练数据的经验概率分布 P ~ ( x , y ) \widetilde {P}(x,y) P (x,y),条件概率分布的对数似然函数表示为:
L P ~ ( P w ) = l o g ∏ x , y P ( y ∣ x ) P ~ ( x , y ) = ∑ x , y P ~ ( x , y ) log ⁡ P ( y ∣ x ) L_{\widetilde {P}}(P_w)=log \prod_{x,y}{P}(y|x)^{\widetilde {P}(x,y)} =\sum \limits_{x,y}\widetilde {P}(x,y)\log{P}(y|x) LP (Pw)=logx,yP(yx)P (x,y)=x,yP (x,y)logP(yx)
所以
L P ~ ( P w ) = ∑ x , y P ~ ( x , y ) log ⁡ P ( y ∣ x ) = ∑ x , y P ~ ( x , y ) ∑ i = 1 n w i f i ( x , y ) − ∑ x , y P ~ ( x , y ) log ⁡ ( Z w ( x ) ) = ∑ x , y P ~ ( x , y ) ∑ i = 1 n w i f i ( x , y ) − ∑ x , y P ~ ( x ) P ( y ∣ x ) log ⁡ ( Z w ( x ) ) = ∑ x , y P ~ ( x , y ) ∑ i = 1 n w i f i ( x , y ) − ∑ x P ~ ( x ) log ⁡ ( Z w ( x ) ) ∑ y P ( y ∣ x ) = ∑ x , y P ~ ( x , y ) ∑ i = 1 n w i f i ( x , y ) − ∑ x P ~ ( x ) log ⁡ ( Z w ( x ) ) \begin{aligned}L_{\widetilde {P}}(P_w)&=\sum \limits_{x,y}\widetilde {P}(x,y)\log{P}(y|x)\\&=\sum \limits_{x,y}\widetilde {P}(x,y)\sum \limits_{i=1}^{n}w_if_i(x,y) -\sum \limits_{x,y}\widetilde{P}(x,y)\log{(Z_w(x))}\\&=\sum \limits_{x,y}\widetilde {P}(x,y)\sum \limits_{i=1}^{n}w_if_i(x,y) -\sum \limits_{x,y}\widetilde{P}(x)P(y|x)\log{(Z_w(x))}\\&=\sum \limits_{x,y}\widetilde {P}(x,y)\sum \limits_{i=1}^{n}w_if_i(x,y) -\sum \limits_{x}\widetilde{P}(x)\log{(Z_w(x))}\sum_{y}P(y|x)\\&=\sum \limits_{x,y}\widetilde {P}(x,y)\sum \limits_{i=1}^{n}w_if_i(x,y) -\sum \limits_{x}\widetilde{P}(x)\log{(Z_w(x))}\end{aligned} LP (Pw)=x,yP (x,y)logP(yx)=x,yP (x,y)i=1nwifi(x,y)x,yP (x,y)log(Zw(x))=x,yP (x,y)i=1nwifi(x,y)x,yP (x)P(yx)log(Zw(x))=x,yP (x,y)i=1nwifi(x,y)xP (x)log(Zw(x))yP(yx)=x,yP (x,y)i=1nwifi(x,y)xP (x)log(Zw(x))
以上推导用到了 ∑ y P ( y ∣ x ) = 1 \sum\limits_yP(y|x)=1 yP(yx)=1

要极大化似然函数,即极小化 − L P ~ ( P w ) -L_{\widetilde {P}}(P_w) LP (Pw)

所以学习的优化目标是:
min ⁡ w ∈ R n f ( w ) = ∑ x P ~ ( x ) log ⁡ ∑ y exp ⁡ ( ∑ i = 1 n w i f i ( y , x ) ) − ∑ x , y P ~ ( x , y ) ∑ i = 1 n w i f i ( x , y ) \min\limits_{w \in \R^n} f(w) =\sum \limits_{x}\widetilde{P}(x)\log{\sum_y\exp \left(\sum_{i=1}^nw_if_i(y,x)\right)} - \sum \limits_{x,y}\widetilde {P}(x,y)\sum \limits_{i=1}^{n}w_if_i(x,y) wRnminf(w)=xP (x)logyexp(i=1nwifi(y,x))x,yP (x,y)i=1nwifi(x,y)
其梯度函数是
g ( w ) = ( ∂ f ( w ) ∂ w 1 , ∂ f ( w ) ∂ w 2 , … ∂ f ( w ) ∂ w n ) T g(w) = \left( \frac{\partial f(w)}{\partial w_1},\frac{\partial f(w)}{\partial w_2},\ldots \frac{\partial f(w)}{\partial w_n}\right)^T g(w)=(w1f(w),w2f(w),wnf(w))T
其中:
∂ f ( w ) ∂ w i = ∑ x , y P ~ ( x ) P w ( y ∣ x ) f i ( y , x ) − ∑ x , y P ~ ( x , y ) f i ( x , y ) \frac{\partial f(w)}{\partial w_i}=\sum \limits_{x,y}\widetilde{P}(x)P_w(y|x)f_i(y,x) - \sum \limits_{x,y}\widetilde {P}(x,y)f_i(x,y) wif(w)=x,yP (x)Pw(yx)fi(y,x)x,yP (x,y)fi(x,y)
向量化:
∂ f ( w ) ∂ w = ∑ x , y P ~ ( x ) P w ( y ∣ x ) f ( y , x ) − ∑ x , y P ~ ( x , y ) f ( x , y ) \frac{\partial f(w)}{\partial w}=\sum \limits_{x,y}\widetilde{P}(x)P_w(y|x)f(y,x) - \sum \limits_{x,y}\widetilde {P}(x,y)f(x,y) wf(w)=x,yP (x)Pw(yx)f(y,x)x,yP (x,y)f(x,y)

条件随机场学习的BFGS算法

输入:特征函数 f 1 , f 2 , … , f n f_1,f_2,\ldots,f_n f1,f2,,fn ;经验分布 P ~ ( x , y ) \widetilde P(x,y) P (x,y);

输出:最优参数 w ^ \hat w w^ ; 最优模型 P w ( y ∣ x ) P_w(y|x) Pw(yx)

(1)选定初始点 w ( 0 ) w^{(0)} w(0) B 0 \mathbf B_0 B0 为正定对称矩阵, k = 0 k=0 k=0

(2)计算 g k = g ( w ( k ) ) g_k=g(w^{(k)}) gk=g(w(k)) 。若 g k = 0 g_k=0 gk=0 则停止计算,否则转(3)。

(3)由 B k p k = − g k B_kp_k=-g_k Bkpk=gk 求出 p k p_k pk

(4)一维搜索:求 λ k \lambda_k λk 使得:
f ( w ( k ) + λ k p k ) = min ⁡ λ ≥ 0 f ( w ( k ) + λ p k ) f(w^{(k)}+\lambda_kp_k)= \min\limits_{\lambda \geq 0}f(w^{(k)}+\lambda p_k) f(w(k)+λkpk)=λ0minf(w(k)+λpk)
(5)置 w ( k + 1 ) = w ( k ) + λ k p k w^{(k+1)} = w^{(k)} + \lambda_k p_k w(k+1)=w(k)+λkpk

(6)计算 g k + 1 = g ( w ( k + 1 ) ) g_{k+1} = g(w^{(k+1)}) gk+1=g(w(k+1)) ,若 g k + 1 = 0 g_{k+1} = 0 gk+1=0 ,则停止计算,否则,按下式更新 B k + 1 B_{k+1} Bk+1:
B k + 1 = B k + y k y k T y k T δ k − B k δ k δ k T B k δ k T B k δ k \mathbf B_{k+1} = \mathbf B_{k}+\frac{y_ky_k^T}{y_k^T\delta_k}-\frac{\mathbf B_k\delta_k \delta_k^T\mathbf B_k}{\delta_k^T\mathbf B_k\delta_k} Bk+1=Bk+ykTδkykykTδkTBkδkBkδkδkTBk
其中:
y k = g k + 1 − g k , δ k = w ( k + 1 ) − w k y_k = g_{k+1} - g_k, \qquad\delta_k=w^{(k+1)} - w^{k} yk=gk+1gk,δk=w(k+1)wk
(7)置 k = k + 1 k=k+1 k=k+1 , 转(3)

3,预测问题

维特比算法解码思路

预测问题也可以理解为解码问题:给定条件随机场的条件概率 P ( y ∣ x ) P(y|x) P(yx)和一个观测序列x,要求出满足 P ( y ∣ x ) P(y|x) P(yx)最大的序列y。这个解码算法最常用的还是和HMM解码类似的维特比算法。

对于我们linear-CRF中的维特比算法,我们定义一个局部状态 δ i ( l ) \delta_i(l) δi(l),表示在位置 i i i标记 l l l各个可能取值(1,2…m)对应的非规范化概率的最大值。之所以用非规范化概率是,规范化因子 Z ( x ) Z(x) Z(x)不影响最大值的比较。根据 δ i ( l ) \delta_i(l) δi(l)的定义,我们递推在位置 i + 1 i+1 i+1标记 l l l的表达式为:
δ i + 1 ( l ) = max ⁡ 1 ≤ j ≤ m { δ i ( j ) + ∑ k = 1 K w k f k ( y i = j , y i + 1 = l , x , i ) }    , l = 1 , 2 , . . . m \delta_{i+1}(l) = \max_{1 \leq j \leq m}\{\delta_i(j) + \sum\limits_{k=1}^Kw_kf_k(y_{i} =j,y_{i+1} = l,x,i)\}\;, l=1,2,...m δi+1(l)=1jmmax{δi(j)+k=1Kwkfk(yi=j,yi+1=l,x,i)},l=1,2,...m
我们需要用另一个局部状态 Ψ i + 1 ( l ) \Psi_{i+1}(l) Ψi+1(l)来记录使 δ i + 1 ( l ) \delta_{i+1}(l) δi+1(l)达到最大的位置 i i i的标记取值,这个值用来最终回溯最优解, Ψ i + 1 ( l ) \Psi_{i+1}(l) Ψi+1(l)的递推表达式为:
Ψ i + 1 ( l ) = a r g    max ⁡ 1 ≤ j ≤ m { δ i ( j ) + ∑ k = 1 K w k f k ( y i = j , y i + 1 = l , x , i ) }    , l = 1 , 2 , . . . m \Psi_{i+1}(l) = arg\;\max_{1 \leq j \leq m}\{\delta_i(j) + \sum\limits_{k=1}^Kw_kf_k(y_{i} =j,y_{i+1} = l,x,i)\}\; ,l=1,2,...m Ψi+1(l)=arg1jmmax{δi(j)+k=1Kwkfk(yi=j,yi+1=l,x,i)},l=1,2,...m

维特比算法流程

linear-CRF模型维特比算法流程:

输入:模型的K个特征函数,和对应的K个权重。观测序列 x = ( x 1 , x 2 , . . . x n ) x=(x_1,x_2,...x_n) x=(x1,x2,...xn),可能的标记个数m

输出:最优标记序列 y ∗ = ( y 1 ∗ , y 2 ∗ , . . . y n ∗ ) y^* =(y_1^*,y_2^*,...y_n^*) y=(y1,y2,...yn)

具体而言:

1,初始化:
δ 1 ( l ) = ∑ k = 1 K w k f k ( y 0 = s t a r t , y 1 = l , x , i ) }    , l = 1 , 2 , . . . m Ψ 1 ( l ) = s t a r t    , l = 1 , 2 , . . . m \delta_{1}(l) = \sum\limits_{k=1}^Kw_kf_k(y_{0} =start,y_{1} = l,x,i)\}\;, l=1,2,...m \\ \Psi_{1}(l) = start\;, l=1,2,...m δ1(l)=k=1Kwkfk(y0=start,y1=l,x,i)},l=1,2,...mΨ1(l)=start,l=1,2,...m
2,对于 i = 1 , 2... n − 1 i=1,2...n-1 i=1,2...n1进行递推:
δ i + 1 ( l ) = max ⁡ 1 ≤ j ≤ m { δ i ( j ) + ∑ k = 1 K w k f k ( y i = j , y i + 1 = l , x , i ) }    , l = 1 , 2 , . . . m \delta_{i+1}(l) = \max_{1 \leq j \leq m}\{\delta_i(j) + \sum\limits_{k=1}^Kw_kf_k(y_{i} =j,y_{i+1} = l,x,i)\}\;, l=1,2,...m δi+1(l)=1jmmax{δi(j)+k=1Kwkfk(yi=j,yi+1=l,x,i)},l=1,2,...m

Ψ i + 1 ( l ) = a r g    max ⁡ 1 ≤ j ≤ m { δ i ( j ) + ∑ k = 1 K w k f k ( y i = j , y i + 1 = l , x , i ) }    , l = 1 , 2 , . . . m \Psi_{i+1}(l) = arg\;\max_{1 \leq j \leq m}\{\delta_i(j) + \sum\limits_{k=1}^Kw_kf_k(y_{i} =j,y_{i+1} = l,x,i)\}\; ,l=1,2,...m Ψi+1(l)=arg1jmmax{δi(j)+k=1Kwkfk(yi=j,yi+1=l,x,i)},l=1,2,...m

3, i i i迭代到n-1时停止:
y n ∗ = a r g    max ⁡ 1 ≤ j ≤ m δ n ( j ) y_n^* = arg\;\max_{1 \leq j \leq m}\delta_n(j) yn=arg1jmmaxδn(j)
4,回溯:
y i ∗ = Ψ i + 1 ( y i + 1 ∗ )    , i = n − 1 , n − 2 , . . . 1 y_i^* = \Psi_{i+1}(y_{i+1}^*)\;, i=n-1,n-2,...1 yi=Ψi+1(yi+1),i=n1,n2,...1
最终得到的标记序列为:
y ∗ = ( y 1 ∗ , y 2 ∗ , . . . y n ∗ ) y^* =(y_1^*,y_2^*,...y_n^*) y=(y1,y2,...yn)

linear-CRF模型维特比算法实例

假设输入的都是三个词的句子,即 X = ( X 1 , X 2 , X 3 ) X=(X_1,X_2,X_3) X=(X1,X2,X3),输出的词性标记为 Y = ( Y 1 , Y 2 , Y 3 ) Y=(Y_1,Y_2,Y_3) Y=(Y1,Y2,Y3),其中 Y ∈ { 1 ( 名 词 ) , 2 ( 动 词 ) } Y \in \{1(名词),2(动词)\} Y{1()2()}

这里只标记出取值为1的特征函数如下:
t 1 = t 1 ( y i − 1 = 1 , y i = 2 , x , i ) , i = 2 , 3 ,      λ 1 = 1 t 2 = t 2 ( y 1 = 1 , y 2 = 1 , x , 2 )      λ 2 = 0.6 t 3 = t 3 ( y 2 = 2 , y 3 = 1 , x , 3 )      λ 3 = 1 t 4 = t 4 ( y 1 = 2 , y 2 = 1 , x , 2 )      λ 4 = 1 t 5 = t 5 ( y 2 = 2 , y 3 = 2 , x , 3 )      λ 5 = 0.2 s 1 = s 1 ( y 1 = 1 , x , 1 )      μ 1 = 1 s 2 = s 2 ( y i = 2 , x , i ) , i = 1 , 2 ,      μ 2 = 0.5 s 3 = s 3 ( y i = 1 , x , i ) , i = 2 , 3 ,      μ 3 = 0.8 s 4 = s 4 ( y 3 = 2 , x , 3 )      μ 4 = 0.5 t_1 =t_1(y_{i-1} = 1, y_i =2,x,i), i =2,3,\;\;\lambda_1=1\\ t_2 =t_2(y_1=1,y_2=1,x,2)\;\;\lambda_2=0.6\\ t_3 =t_3(y_2=2,y_3=1,x,3)\;\;\lambda_3=1\\ t_4 =t_4(y_1=2,y_2=1,x,2)\;\;\lambda_4=1\\ t_5 =t_5(y_2=2,y_3=2,x,3)\;\;\lambda_5=0.2\\ s_1 =s_1(y_1=1,x,1)\;\;\mu_1 =1\\ s_2 =s_2( y_i =2,x,i), i =1,2,\;\;\mu_2=0.5\\ s_3 =s_3( y_i =1,x,i), i =2,3,\;\;\mu_3=0.8\\ s_4 =s_4(y_3=2,x,3)\;\;\mu_4 =0.5 t1=t1(yi1=1,yi=2,x,i),i=2,3,λ1=1t2=t2(y1=1,y2=1,x,2)λ2=0.6t3=t3(y2=2,y3=1,x,3)λ3=1t4=t4(y1=2,y2=1,x,2)λ4=1t5=t5(y2=2,y3=2,x,3)λ5=0.2s1=s1(y1=1,x,1)μ1=1s2=s2(yi=2,x,i),i=1,2,μ2=0.5s3=s3(yi=1,x,i),i=2,3,μ3=0.8s4=s4(y3=2,x,3)μ4=0.5
求标记(1,2,2)的最可能的标记序列。

首先初始化:
δ 1 ( 1 ) = μ 1 s 1 = 1        δ 1 ( 2 ) = μ 2 s 2 = 0.5        Ψ 1 ( 1 ) = Ψ 1 ( 2 ) = s t a r t \delta_1(1) = \mu_1s_1 = 1\;\;\;\delta_1(2) = \mu_2s_2 = 0.5\;\;\;\Psi_{1}(1) =\Psi_{1}(2) = start δ1(1)=μ1s1=1δ1(2)=μ2s2=0.5Ψ1(1)=Ψ1(2)=start
接下来开始递推,先看位置2的:
δ 2 ( 1 ) = m a x { δ 1 ( 1 ) + t 2 λ 2 + μ 3 s 3 , δ 1 ( 2 ) + t 4 λ 4 + μ 3 s 3 } = m a x { 1 + 0.6 + 0.8 , 0.5 + 1 + 0.8 } = 2.4        \begin{aligned} \delta_2(1) &= max\{\delta_1(1) + t_2\lambda_2+\mu_3s_3, \delta_1(2) + t_4\lambda_4+\mu_3s_3 \} \\ &= max\{1+0.6+0.8,0.5+1+0.8\} \\ &=2.4\;\;\;\\ \end{aligned} δ2(1)=max{δ1(1)+t2λ2+μ3s3,δ1(2)+t4λ4+μ3s3}=max{1+0.6+0.8,0.5+1+0.8}=2.4

Ψ 2 ( 1 ) = 1 \Psi_{2}(1) =1 Ψ2(1)=1

δ 2 ( 2 ) = m a x { δ 1 ( 1 ) + t 1 λ 1 + μ 2 s 2 , δ 1 ( 2 ) + μ 2 s 2 } = m a x { 1 + 1 + 0.5 , 0.5 + 0.5 } = 2.5        \begin{aligned} \delta_2(2) &= max\{\delta_1(1) + t_1\lambda_1+\mu_2s_2, \delta_1(2) + \mu_2s_2\}\\& = max\{1+1+0.5,0.5+0.5\} \\&=2.5\;\;\; \end{aligned} δ2(2)=max{δ1(1)+t1λ1+μ2s2,δ1(2)+μ2s2}=max{1+1+0.5,0.5+0.5}=2.5

Ψ 2 ( 2 ) = 1 \Psi_{2}(2) =1 Ψ2(2)=1

再看位置3的:
δ 3 ( 1 ) = m a x { δ 2 ( 1 ) + μ 3 s 3 , δ 2 ( 2 ) + t 3 λ 3 + μ 3 s 3 } = m a x { 2.4 + 0.8 , 2.5 + 1 + 0.8 } = 4.3 \begin{aligned} \delta_3(1) &= max\{\delta_2(1) +\mu_3s_3, \delta_2(2) + t_3\lambda_3+\mu_3s_3\} \\&= max\{2.4+0.8,2.5+1+0.8\} \\&=4.3 \end{aligned} δ3(1)=max{δ2(1)+μ3s3,δ2(2)+t3λ3+μ3s3}=max{2.4+0.8,2.5+1+0.8}=4.3

Ψ 3 ( 1 ) = 2 \Psi_{3}(1) =2 Ψ3(1)=2

δ 3 ( 2 ) = m a x { δ 2 ( 1 ) + t 1 λ 1 + μ 4 s 4 , δ 2 ( 2 ) + t 5 λ 5 + μ 4 s 4 } = m a x { 2.4 + 1 + 0.5 , 2.5 + 0.2 + 0.5 } = 3.9 \begin{aligned} \delta_3(2) &= max\{\delta_2(1) +t_1\lambda_1 + \mu_4s_4, \delta_2(2) + t_5\lambda_5+\mu_4s_4\} \\&= max\{2.4+1+0.5,2.5+0.2+0.5\} \\&=3.9 \end{aligned} δ3(2)=max{δ2(1)+t1λ1+μ4s4,δ2(2)+t5λ5+μ4s4}=max{2.4+1+0.5,2.5+0.2+0.5}=3.9

Ψ 3 ( 2 ) = 1 \Psi_{3}(2) =1 Ψ3(2)=1

最终得到 y 3 ∗ = arg ⁡    m a x { δ 3 ( 1 ) , δ 3 ( 2 ) } y_3^* =\arg\;max\{\delta_3(1), \delta_3(2)\} y3=argmax{δ3(1),δ3(2)}递推回去,得到:
y 2 ∗ = Ψ 3 ( 1 ) = 2      y 1 ∗ = Ψ 2 ( 2 ) = 1 y_2^* = \Psi_3(1) =2\;\;y_1^* = \Psi_2(2) =1 y2=Ψ3(1)=2y1=Ψ2(2)=1
即最终的结果为 ( 1 , 2 , 1 ) (1,2,1) (1,2,1),即标记为(名词,动词,名词)。

参考文章:

《统计学习方法 第二版》

条件随机场CRF(一)从随机场到线性链条件随机场

条件随机场CRF(二) 前向后向算法评估标记序列概率

条件随机场CRF(三) 模型学习与维特比算法解码

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值