深度学习:开山之作AlexNet论文详解

AlexNet是一个卷积神经网络,由亚历克斯·克里泽夫斯基(Alex Krizhevsky)设计,与伊尔亚‧苏茨克维(Ilya Sutskever)和克里泽夫斯基的博士导师杰弗里·辛顿共同发表,而辛顿最初抵制他的学生的想法。

AlexNet参加了2012年9月30日举行的ImageNet大规模视觉识别挑战赛,达到最低的15.3%的Top-5错误率,比第二名低10.8个百分点。原论文的主要结论是,模型的深度对于提高性能至关重要,AlexNet的计算成本很高,但因在训练过程中使用了图形处理器(GPU)而使得计算具有可行性。

目录

问题背景

本文主要贡献

ImageNet 数据集

ImageNet 和 ILSVRC

ILSVRC 数据集

本文中对图像的预处理

网络架构

ReLU 激活函数

GPU 并行训练

局部响应归一化 (LRN)

交叠池化 (Overlapping Pooling)

模型的详细结构

减缓过拟合

数据增强

Dropout

实验结果


问题背景

本文在如下背景下展开研究:

  1. 当前图像分类任务主要是通过传统机器学习的方法进行的,模型容量小,且不易于实际使用,容易过拟合
  2. 实际目标多样性丰富,标记好的数据集的样本数越来越大,需要更高容量的模型进行学习。而卷积神经网络可以通过调节深度和宽度来控制模型的容量,且充分利用了自然图像的局部空间相关性的特性
  3. GPUs 等硬件以及高度优化的 2-D 卷积运算的实现发展成熟,以足够强大,可用于训练较大的 CNNs,结合如今的大数据集,不用过分担心过拟合

本文主要贡献

本文的模型,即 AlexNet,其由多伦多大学,Geoff Hinton 实验室设计,夺得了 2012 年 ImageNet ILSVRC 比赛的冠军,且其 top-5 错误率远低于第二名,分别为 15.3% 和 26.2%

AlexNet 在深度学习发展史上的历史意义远大于其模型的影响。在此之前,深度学习已经沉寂了很久。在此之后,深度学习重新迎来春天,卷积神经网络也成为计算机视觉的核心算法模型。

本文的主要内容有:

  1. 使用 ReLU 激活函数加速收敛
  2. 使用 GPU 并行,加速训练。也为之后的分组卷积(group convolution)理论奠定基础。
  3. 提出局部响应归一化(Local Response NormalizationLRN)增加泛化特性 (虽然被后人证明无效 )
  4. 使用交叠池化 (Overlapping Pooling) 防止过拟合
  5. 提出Dropout,数据增强等手段防止过拟合

ImageNet 数据集

ImageNet 和 ILSVRC

(截至论文发表时)ImageNet 数据集包含 15 million (1500 万) 张标记好的高分辨率的图像,其包含仅 22000 个类别。从 2010 年始,作为 Pascal Visual Object Challenge 的一部分,一个新的年度比赛 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 拉开帷幕。

ILSVRC 数据集

ILSVRC 使用 ImageNet 数据集的子集,包含 1000 类目标,每类目标约 1000 张图片,共 1200 万张训练图像,50000 张验证图像,15000 张测试图像。

ILSVRC-2010 是唯一一届公开测试集 label 的ILSVRC,因此我们的实验测试在该数据集上进行。评判标准为 top-1 和 top-5 错误率,分别表示预测类别正确,以及正确值位于预测概率最高的 5 个类别时的错误率。

本文中对图像的预处理

由于 ImageNet 包含多种分辨率,而我们的模型要求输入维度固定,因此,我们对图像进行处理,使之固定为256*256。具体做法是,对于给定的图像,我们先将其进行缩放,使其短边尺寸为 256,然后进行中心裁剪,得到输入图像。除了在每个像素上,减去整个数据集对应像素上的均值之外,我们并未对输入图像进行其他预处理。

网络架构

ReLU 激活函数

在此之前,激活函数主要使用的是f(x) = tanh(x)以及f(x) = \frac{1}{1 +(e^-x)^-1}, 但是这些都是饱和激活函数,输入值处于饱和区时,其梯度几乎为 0,因此收敛极慢!

针对这一问题,我们使用线性整流单元 (Rectified Linear Units,ReLU) 作为激活函数,即:f(x) = max(0,x) 。其不存在饱和区,导数始终为 1,梯度更大,计算量也更少,因此收敛更快。

如下图所示,为 tanh 和 ReLU 的收敛速度对比:

GPU 并行训练

单个 GTX 580 GPU 只有 3GB 的显存,这将限制可训练的网络的最大尺寸和 batch size 大小。因此,我们将模型分为两部分,分布到两个 GPU 上进行训练。由于 GPU 之间可以直接进行数据交换,而无需经过主机的内存,因此可以很容易进行并行。

该方式大大的加快了训练速度,具体细节详见模型的详细结构

该技术使得 top-1 和 top-5 误差分别降低 1.7% 和 1.2%

局部响应归一化 (LRN)

在神经生物学有一个概念叫做侧抑制lateral inhibitio),指的是被激活的神经元抑制相邻神经元。归一化(normalization)的目的是“抑制”,局部归一化就是借鉴了侧抑制的思想来实现局部抑制。

当使用 ReLU 时,这种侧抑制很管用,因为 ReLU 的响应结果是无界的,所以需要归一化。使用局部归一化的方案有助于增加泛化能力

局部响应归一化 (Local Response Normalization) 的核心思想就是利用近邻数据进行归一化,其公式如下所示:

\large b_{x, y}^{i}=a_{x, y}^{i} /\left(k+\alpha \sum_{j=\max (0, i-n / 2)}^{\min (N-1, i+n / 2)}\left(a_{x, y}^{j}\right)^{2}\right)^{\beta}

其中:

  1. \alpha_{x,y}^i 表示第 i 个卷积核,作用于位置 (x,y) ,然后进行 ReLU 后,得到的神经元输出。
  2. N 表示该层卷积核的总数目
  3. k,n,\alpha ,\beta 为超参数,其值通过验证集确定
  4. n 表示同一位置上,邻近的卷积核的数目

我们使用 k=2,n=5,\alpha=10^{-4},\beta=0.75 。我们在 ReLU 层之后使用 LRN。局部响应归一化使得 top-1 和 top-5 误差分别降低 1.4% 和 1.2%

LRN 的直观解释就是,在第 i 个特征图上的 (x,y) 出的神经元的值,通过其邻近的 n个特征图上,同一位置的值平方和的相关运算,最后得到的值作为该特征图上,对应位置的新值。

可想而知,其计算量不小!后面的研究者也发现,LRN 并无实际作用,反而增加不少的计算量,因此一般都不再使用。

交叠池化 (Overlapping Pooling)

在一般池化中,池化窗口 z 与滑动步长 s 相等。而交叠池化指的就是 s < z 的池化,此时相邻的滑窗之间会有重叠。在本文实现中,我们使用 z=3,s=2 ,这时的我们的 top-1 和 top-5 误差率分别降低 0.4% 和 0.3%

同时我们发现,使用 overlapping pooling 方式,更不易发生过拟合。

模型的详细结构

AlexNet 的整体结构如下所示:

如上图所示,AlexNet 共包含 8 个可学习的层,其中前 5 层为卷积层,后为全连接层,最后接一个 1000 路的 softmax 层,用于分类。 

参数详细图:

preview

conv1 阶段
输入数据:227×227×3
卷积核:11×11×3;步长:4;数量(也就是输出个数):96
卷积后数据:55×55×96 (原图N×N,卷积核大小n×n,卷积步长大于1为k,输出维度是(N-n)/k+1)
relu1后的数据:55×55×96
Max pool1的核:3×3,步长:2
Max pool1后的数据:27×27×96
norm1:local_size=5 (LRN(Local Response Normalization) 局部响应归一化)
最后的输出:27×27×96
conv2 阶段
输入数据:27×27×96
卷积核:5×5;步长:1;数量(也就是输出个数):256
卷积后数据:27×27×256 (做了Same padding(相同补白),使得卷积后图像大小不变。)
relu2后的数据:27×27×256
Max pool2的核:3×3,步长:2
Max pool2后的数据:13×13×256 ((27-3)/2+1=13 )
norm2:local_size=5 (LRN(Local Response Normalization) 局部响应归一化)
最后的输出:13×13×256

conv2中使用了same padding,保持了卷积后图像的宽高不缩小。

conv3 阶段
输入数据:13×13×256
卷积核:3×3;步长:1;数量(也就是输出个数):384
卷积后数据:13×13×384 (做了Same padding(相同补白),使得卷积后图像大小不变。)
relu3后的数据:13×13×384
最后的输出:13×13×384

conv3层没有Max pool层和norm层

conv4 阶段
输入数据:13×13×384
卷积核:3×3;步长:1;数量(也就是输出个数):384
卷积后数据:13×13×384 (做了Same padding(相同补白),使得卷积后图像大小不变。)
relu4后的数据:13×13×384
最后的输出:13×13×384

conv4层也没有Max pool层和norm层

conv5 阶段
输入数据:13×13×384
卷积核:3×3;步长:1;数量(也就是输出个数):256
卷积后数据:13×13×256 (做了Same padding(相同补白),使得卷积后图像大小不变。)
relu5后的数据:13×13×256
Max pool5的核:3×3,步长:2
Max pool2后的数据:6×6×256 ((13-3)/2+1=6 )
最后的输出:6×6×256

conv5层有Max pool,没有norm层

fc6 阶段
输入数据:6×6×256
全连接输出:4096×1
relu6后的数据:4096×1
drop out6后数据:4096×1
最后的输出:4096×1
fc7 阶段
输入数据:4096×1
全连接输出:4096×1
relu7后的数据:4096×1
drop out7后数据:4096×1
最后的输出:4096×1
fc8阶段
输入数据:4096×1
全连接输出:1000
fc8输出一千种分类的概率。

整体来看,AlexNet的卷积核从11到5再到3不断变小,而feature map也通过重叠式max pool在第1、2、5层折半式缩小,到第5个卷积层后,图像特征已经提炼得足够充分,便用两个全连接层和一个softmax层组合得出最终的分类结果。

AlexNet相对于前辈们有以下改进:

1、AlexNet采用了Relu激活函数:ReLU(x) = max(x,0)

2、AlexNet另一个创新是LRN(Local Response Normalization) 局部响应归一化,LRN模拟神经生物学上一个叫做 侧抑制(lateral inhibitio)的功能,侧抑制指的是被激活的神经元会抑制相邻的神经元。LRN局部响应归一化借鉴侧抑制的思想实现局部抑制,使得响应比较大的值相对更大,提高了模型的泛化能力。LRN只对数据相邻区域做归一化处理,不改变数据的大小和维度。

3、AlexNet还应用了Overlapping(重叠池化),重叠池化就是池化操作在部分像素上有重合。池化核大小是n×n,步长是k,如果k=n,则是正常池化,如果 k<n, 则是重叠池化。官方文档中说明,重叠池化的运用减少了top-5和top-1错误率的0.4%和0.3%。重叠池化有避免过拟合的作用。

4、AlexNet在fc6、fc7全连接层引入了drop out的功能。dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率(AlexNet是50%,这种情况下随机生成的网络结构最多)将其暂时从网络中丢弃(保留其权值),不再对前向和反向传输的数据响应。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而相当于每一个mini-batch都在训练不同的网络,drop out可以有效防止模型过拟合,让网络泛化能力更强,同时由于减少了网络复杂度,加快了运算速度。还有一种观点认为drop out有效的原因是对样本增加来噪声,变相增加了训练样本。

5、数据增强:在数据处理这部分作者提到过将每张图片处理为256××256的大小,但网络结构图中的输入却为224××224,这是因为作者在256××256大小的图片上使用了一个224××224的滑动窗口,将每个滑动窗口中的内容作为输入,这样就能将整个数据集扩大到原来的(256−224)×(256−224)=1024(256−224)×(256−224)=1024倍

同时,为了进行多 GPU 并行训练,我们将几乎所有层均分,分别放置于两个 GPU 上进行训练。其中,两个 GPU 之间仅在特定层上进行通信:

  1. 在第 3 层卷积层的时候,同时以前一层在两个 GPU 上的输出进行联合输入,其他卷积层中,GPU 之间数据不互通
  2. 在全连接层,GPU 数据始终互通

接下来梳理一下各层的参数情况:

  • 输入层:图片大小:宽高通道(RGB)依次为W * H * C = 224 x 224 x 3, 即150528像素。
  • 第1个隐层, 卷积层,使用96个11 x 11 x 3的卷积核,如图所示节点数量为:55(W) x 55(H) x 48(C) x 2 = 290400(注:这个地方的节点数与论文中提到的要高,有点奇怪。因为这层跟其他层计算方法一样,其他层的节点数跟论文中完全一致)。根据卷积层的参数 = 卷积核大小 x 卷积核的数量
    + 偏置数量(即卷积的核数量)
    ,本层参数数量为:
    (11 * 11 * 3 * 96) + 96 = 34848, 注:参数分为2部分 ww 和 bb ,“+”前面一部分是 ww 的数量, “+”后面那部分是 bb 的数量,后面的层也按这个思路来计算。
  • 第2个隐层,卷积层, 使用256个5x5x48卷积核,只跟同一个GPU的上一层连接,节点数量:27*27*128*2 = 186624,参数数量:(5*5*48*128+128)*2 = 307456,最后"*2"是因为网络层均匀分布在两个GPU上,先计算单个GPU上的参数,再乘以GPU数量2。
  • 第3个隐层,卷积层,使用384个3x3x256卷积核,节点数量:13*13*192*2 = 64896,参数数量:3*3*256*384+384 = 885120。
  • 第4个隐层,卷积层,使用384个3x3x192卷积核,只跟同一个GPU的上一层连接,节点数量:13*13*192*2 = 64896,参数数量:(3*3*192*192+192)*2 = 663936。
  • 第5个隐层,卷积层,使用256个3x3x192卷积核,只跟同一个GPU的上一层连接,节点数量:13*13*128*2 = 43264,参数数量:(3*3*192*128+128)*2 = 442624。
  • 第6个隐层,全连接层,节点数为4096。根据全连接层的参数数量 = 上一层节点数量(pooling之后的) x 下一层节点数量 + 偏置数量(即下一层的节点数量),参数数量为:(6*6*128*2)*4096+4096 = 37752832,可以看到这个参数数量远远大于之前所有卷积层的参数数量之和。也就是说AlexNet的参数大部分位于后面的全连接层。
  • 第7个隐层,全连接层,节点数量为4096。参数数量为:4096*4096 + 4096= 16781312。
  • 第8个隐层,全连接层,也是1000-way的softmax输出层,节点数量为1000。参数数量为: 4096*1000 + 1000 = 4097000。

最后,为了方便查看,汇总为表格如下,其中最后一行给出了Alex的参数总量。
AlexNet参数

减缓过拟合

我们的神经网络包含 60 million 参数。尽管 1000 累的 ILSVRC 数据集较为庞大,但是仍不足以抵制模型的过拟合。因此,我们使用如下技巧来减缓过拟合。

数据增强

最简单常用的减缓过拟合的方式就是人工扩充数据集。我们使用了两种不同的方式进行数据增强,且不额外增加过多的计算量,因此可以在线转换。在我们的实现中,我们使用 Python 在 CPU 上进行数据增强,而 GPU 用于训练数据,因此无需占用额外的 GPU 计算资源。

第一种方式是,从256×256的图像及其水平镜像中,随机crop 224×224,然后在这种 patches 上训练模型。相当于训练集的增长倍数为(256-224)^2 *2=2048

不使用这种方式时,模型会发生过拟合,因此我们不得不使用更小的模型。在测试期间,分别对输入图像及其水平翻转抽取 5 个 224×224 的 patches4 角 + 中心),进行预测。然后将 10 个预测值进行平均。

另一种方式是,对 RGB 空间做 PCA,然后对主成分进行 0 均值,0.01 标准差的高斯扰动,也就是对颜色,光照等做变换。通过这种方式,top-1 误差率减少了 1%。(这一段不太懂,所以未解释清楚)

Dropout

结合不同模型的预测值,是一种减小测试误差的不错的方式,但是其代价极其昂贵。因此,使用 dropout 技术,以 0.5 的概率,将每个隐藏神经元的值设定为 0。被 dropout 的神经元将不参与前向和反向传播。

在训练阶段的每次前向传播中,都会重新进行 dropout。因此,每次有新的输入时,模型会被随机采样成不同的架构,但是所有的架构共享权值。该技术可以减少神经元之间的相互依赖性。因此,模型被强制学习更加稳健的特征。

在测试期间,我们使用所有的神经元,只不过将其输出值乘以 0.5,以保证总的等效输出值不变。我们在网络的的前两层全连接层之间使用 dropout

如果不使用 dropout ,模型可能会过拟合,但是使用 dropout,模型训练将需要近两倍的迭代次数。

dropout 图示如下所示:

preview

我们使用随机梯度下降来训练模型,batch size = 128,动量系数为 0.9,权值衰减系数为 0.0005。我们发现,这种小的权值衰减对于模型的学习很重要。换言之,权值衰减不仅仅是一个正则器,其同时降低了训练误差。

权值 w 的更新规则如下:

\large v_{i+1}:= 0.9\cdot v_i - 0.0005\cdot \epsilon \cdot \omega _i - \epsilon\cdot \left \langle \frac{\partial L}{\partial w}\mid_{w_{i}} \right \rangle_{D_i}\\

\large w_{i+1}:= w_i + v_{i+1}

其中,i 为迭代索引,v 表示动量值,\large \epsilon表示学习速率,\large \left \langle \frac{\partial L}{\partial w}\mid_{w_{i}} \right \rangle_{D_i}表示第i个batch D_i 中,目标函数对 w_i 的梯度的均值。

我们初始化每一层的权值为 0 均值,标准差为 0.01 的高斯分布。我们初始化第 2,4,5 层卷积层,以及全连接隐藏层的偏置为 1。这种初始化通过给 ReLU 输出正值,加速了网络早期的训练。我们初始化剩余层的偏置为 0

对于每一层,我们使用相同的学习速率,在训练过程中手动调节:每次当验证误差不再下降时,学习速率减小为原来的十分之一。学习速率初始化为 0.01,并共减小三次。我们的模型最终在 1.2 million 张训练图片上,训练了 90 个周期,在两张 NVIDIA GTX 580 3GB GPUs 上,花费了 5 到 6 天的时间。

实验结果

我们在 ILSVRC-2010 上的结果如下表所示。其中,top-1 和 top-5 的测试误差分别为 37.5% 和 17.0%

我们同时将模型在 ILSVRC-2012 上进行了测试,如下表所示。由于 ILSVRC-2012 测试集的 label 并未公开,因此无法知晓所有我们测试过的模型的误差。

如上表所示,为各模型在 ILSVRC-2012 验证集和测试集上的误差率。其中,* 表示在 ImageNet 2011 完整数据集上进行预训练的模型。

  1. 1 CNN 表示一个上文中的模型,其 top-5 的误差率为 18.2%
  2. 5 CNNs 表示 5 个上文中的模型组成的集成模型,其 top-5 的误差率为 16.4%
  3. 1CNN^* 表示在上述模型的最后一层 pooling 之后,额外加一个卷积层得到的模型。先在整个 ImageNet 2011 数据集上预训练,然后在 ILSVRC-2012 数据集上进行 fine-tune,得到的模型的 top-5 误差率为 16.6%
  4. 将 3 中的模型,与 5 个前面提到的模型的预测值进行平均,对应的 top-5 误差率为 15.3%

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值