注意力模块 SE、CBAM、 ECA 三种 代码实现

该文介绍了三种用于卷积神经网络的注意力机制:SE块(Squeeze-and-Excitationblock),CBAM(ChannelandSpatialAttentionModule)以及ECA块(EfficientChannelAttention)。这些机制通过不同的方式增强了模型对特征的识别和加权,包括通道注意力和空间注意力,以提高模型的性能和表达能力。
摘要由CSDN通过智能技术生成

import torch
import torch.nn as nn
import math
 
#----------------------------#
# SE注意力机制
#----------------------------#
class se_block(nn.Module):
    def __init__(self, channel, ratio=16):
        super(se_block, self).__init__()
        #--------------------------------------------------#
        # 此为自适应的二维平均全局池化操作
        # 通道数不会发生改变
        # The output is of size H x W, for any input size.
        # AdaptiveAvgPool2d(1) = AdaptiveAvgPool2d((1,1))
        #--------------------------------------------------#
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
 
        #-------------------------------------------------------#
        # 对于全连接层,第一个参数为输入的通道数,第二个参数为输入的通道数
        # 之后经过ReLU来提升模型的非线性表达能力,以及对特征信息进行编码
        # sigmoid还是一个激活函数,来提升模型的非线性表达能力
        # ratio越大其对于特征融合以及信息表达所产生的影响越大,
        # 压缩降维对于学习通道之间的依赖关系有着不利影响
        #-------------------------------------------------------#
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // ratio, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // ratio, channel, bias=False),
            nn.Sigmoid()
        )
 
    def forward(self, x):
 
        b, c, _, _ = x.size()
        #-----------------------------------------------------------------#
        # 先进行自适应二维全局平均池化,然后进行一个reshape的操作
        # 之后使其通过一个全连接层、一个ReLU、一个全连接层、一个Sigmoid层
        # 再将其reshape成之前的shape即可
        # 最后将注意力权重y和输入X按照通道加权相乘,调整模型对输入x不同通道的重视程度
        #------------------------------------------------------------=----#
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y
 
 
#--------------------------------------#
# CBAM注意力机制 包含通道注意力以及空间注意力
#--------------------------------------#
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=8):
        super(ChannelAttention, self).__init__()
 
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        #-----------------------------------------#
        # 利用1x1卷积代替全连接,以减小计算量以及模型参数
        # 整体前向传播过程为 卷积 ReLU 卷积 进而实现特征
        # 信息编码以及增强网络的非线性表达能力
        #-----------------------------------------#
        self.fc1   = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2   = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        #----------------------------------------#
        # 定义sigmoid激活函数以增强网络的非线性表达能力
        #----------------------------------------#
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        #-------------------------------------#
        # 分成两部分,一部分为平均池化,一部分为最大池化
        # 之后将两部分的结果相加再经过sigmoid作用
        #-------------------------------------#
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out     = avg_out + max_out
        return self.sigmoid(out)
 
 
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
 
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding      = 3 if kernel_size == 7 else 1
        #-------------------------------------#
        # 这个卷积操作为大核卷积操作,其虽然可以计算
        # 空间注意力但是仍无法有效建模远距离依赖关系
        #-------------------------------------#
        self.conv1   = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        #----------------------------------------------------#
        # 整体前向传播过程即为先分别做平均池化操作,再做最大池化操作
        # 其中的dim:
        # 指定为1时,求得是列的平均值
        # 指定为0时,求得是行的平均值
        # 之后将两个输出按照列维度进行拼接,此时通道数为2
        # 拼接之后通过一个大核卷积将双层特征图转为单层特征图,此时通道为1
        # 最后通过sigmoid来增强模型的非线性表达能力
        #-----------------------------------------------------#
        avg_out    = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x          = torch.cat([avg_out, max_out], dim=1)
        x          = self.conv1(x)
        return self.sigmoid(x)
 
 
class cbam_block(nn.Module):
    def __init__(self, channel, ratio=8, kernel_size=7):
        super(cbam_block, self).__init__()
        #----------------------------#
        # 定义好通道注意力以及空间注意力
        #----------------------------#
        self.channelattention = ChannelAttention(channel, ratio=ratio)
        self.spatialattention = SpatialAttention(kernel_size=kernel_size)
 
        #----------------------------#
        # 输入x先与通道注意力权重相乘
        # 之后将输出与空间注意力权重相乘
        #----------------------------#
    def forward(self, x):
        x = x * self.channelattention(x)
        x = x * self.spatialattention(x)
        return x
 
 
#----------------------------#
# ECA注意力机制
#----------------------------#
class eca_block(nn.Module):
    def __init__(self, channel, b=1, gamma=2):
        super(eca_block, self).__init__()
        #----------------------------------#
        # 根据通道数求出卷积核的大小kernel_size
        #----------------------------------#
        kernel_size = int(abs((math.log(channel, 2) + b) / gamma))
        kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
 
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv     = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False)
        self.sigmoid  = nn.Sigmoid()
 
    def forward(self, x):
        #------------------------------------------#
        # 显示全局平均池化,再是k*k的卷积,
        # 最后为Sigmoid激活函数,进而得到每个通道的权重w
        # 最后进行回承操作,得出最终结果
        #------------------------------------------#
        y = self.avg_pool(x)
        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
        y = self.sigmoid(y)
        return x * y.expand_as(x)
 

SE注意力机制(Squeeze-and-Excitation Networks),ECANet(Efficient Channel Attention)和CBAM(Convolutional Block Attention Module)都是用于增强神经网络提取图像特征的注意力机制。 SE注意力机制主要关注通道维度,其关键操作是squeeze和excitation。squeeze操作通过全局平均池化层对输入特征图在通道维度进行降维,将其压缩为一个通道向量。excitation操作通过全连接层对该通道向量进行学习,生成一个权重向量。最后,将这个权重向量通过乘法操作应用到输入特征图上,使得网络能够自适应地调整每个通道的重要性。 ECANet是一种替代SE注意力机制中的MLP结构的通道注意力机制。它使用一维卷积操作来代替SE中的全连接层。ECANet的设计主要是为了减少计算量和参数量,同时保持或提高注意力机制的性能。通过使用一维卷积,ECANet可以更高效地对通道特征进行建模,并且在性能方面表现出色。 CBAM是一种将通道注意力机制和空间注意力机制相结合的注意力模块。它在SE注意力机制或ECANet之后添加了空间注意力机制。空间注意力机制通过使用卷积操作对特征图的空间维度进行建模,以捕捉不同位置的特征关系。CBAM模块可以同时对通道和空间维度进行建模,从而提高网络对图像的表示能力。 通过引入SE注意力机制、ECANet和CBAM,网络能够在特征提取层增加注意力机制,从而提高网络对图像特征的建模能力。这些注意力机制能够自适应地调整每个通道或空间位置的重要性,从而提高网络的性能和表达能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值