微分中值定理与导数的应用

本文详细介绍了微分中值定理的三大定理——罗尔定理、拉格朗日中值定理和柯西中值定理,以及它们在求解函数性质中的应用。此外,还探讨了洛必达法则用于处理未定式极限的情况,泰勒公式在函数近似和解析延展中的作用,以及如何通过导数判断函数的单调性和曲线的凹凸性来寻找函数的极值点。
摘要由CSDN通过智能技术生成

微分中值定理

罗尔定理

如果函数 f(x) f ( x ) 满足:
1. 在闭区间 [a,b] [ a , b ] 上连续;
2. 在开区间 (a,b) ( a , b ) 上可导;
3. 在区间端点处的函数值相等, 即 f(a)=f(b) f ( a ) = f ( b )
那么在 (a,b) ( a , b ) 内至少有一点 ξa<ξ<b ξ ( a < ξ < b ) ,使得 f(ξ)=0 f ′ ( ξ ) = 0

拉格朗日中值定理

  1. 拉格朗日中值定理
    如果函数 f(x) f ( x ) 满足:
    1. 在闭区间 [a,b] [ a , b ] 上连续;
    2. 在开区间 (a,b) ( a , b ) 内可导,
      那么在 (a,b) ( a , b ) 内至少有一点 ξ(a<ξ<b) ξ ( a < ξ < b ) ,使等式 f(b)f(a)=f(ξ)(ba) f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) 成立,即 f(b)f(a)ba=f(ξ) f ( b ) − f ( a ) b − a = f ′ ( ξ )
  2. 如果函数 f(x) f ( x ) 在区间 I I 上的导数恒为零,那么 f ( x ) 在区间 I I 上是一个常数

柯西中值定理

如果函数 f ( x ) F(x) F ( x ) 满足:
1. 在闭区间 [a,b] [ a , b ] 上连续;
2. 在开区间 (a,b) ( a , b ) 内可导;
3. 对任一 x(a,b)F(x)0 x ∈ ( a , b ) , F ′ ( x ) ≠ 0
那么在 (a,b) ( a , b ) 内至少有一点 ξ ξ ,使等式 f(b)f(a)F(b)F(a)=f(ξ)F(ξ) f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ )

洛必达法则

  1. 未定式:如果对于极限 limxa(x)f(x)F(x) lim x → a ( x → ∞ ) f ( x ) F ( x ) f(x)F(x) f ( x ) 、 F ( x ) 可能同时都趋于零或者都趋于无穷大,那么极限可能存在,也可能不存在。这样的极限叫做未定式。
  2. 设:
    1. xa x → a 时,函数 f(x) f ( x ) F(x) F ( x ) 都趋于零;
    2. 在点 a a 的某去心邻域内, f ( x ) F(x) F ′ ( x ) 都存在且 F(x)0 F ( x ) ≠ 0
    3. limxaf(x)F(x) lim x → a f ′ ( x ) F ′ ( x ) 存在(或为无穷大)
      那么, limxa
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值