「解析」netron 模型可视化

本文介绍了Netron作为一款强大的神经网络可视化工具,支持多种框架如ONNX、TensorFlow等。通过示例展示了如何用PyTorch创建ResNet34模型并导出为ONNX格式,然后利用ONNX进行形状推理,增强模型文件的维度信息。Netron对于理解和调试深度学习模型非常有帮助。

Netron是神经网络、深度学习和机器学习模型的一款可视化工具

Netron支持ONNX、TensorFlow Lite、Caffe、Keras、Darknet、飞浆、ncnn、MNN、Core ML、RKNN、MXNet、MindSpore Lite、TNN、Barracuda、Tengine, CNTK, TensorFlow.js, Caffe2 and UFF.

Netron对PyTorch、TensorFlow、TorchScript、OpenVINO、Torch、Vitis AI、kmodel、Arm NN、BigDL、Chainer、Deeplearning4j、MediaPipe、ML.NET和scikit learn提供实验支持。

官方地址:https://github.com/lutzroeder/netron

Python Server: Run pip install netron and netron [FILE] or netron.start('[FILE]')

在这里插入图片描述

import torchvision.models as models
import torch



# 定义数据+网络
data  = torch.randn(2, 3, 256, 256)
model = models.resnet34()

# 导出
torch.onnx.export(
    model,
    data,
    'model.onnx',
    export_params=True,
    opset_version=8,
)


import onnx
import onnx.utils
import onnx.version_converter


# 增加维度信息
model_file = 'model.onnx'
onnx_model = onnx.load(model_file)
onnx.save(onnx.shape_inference.infer_shapes(onnx_model), model_file)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViatorSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值