Netron是神经网络、深度学习和机器学习模型的一款可视化工具
Netron支持ONNX、TensorFlow Lite、Caffe、Keras、Darknet、飞浆、ncnn、MNN、Core ML、RKNN、MXNet、MindSpore Lite、TNN、Barracuda、Tengine, CNTK, TensorFlow.js, Caffe2 and UFF.
Netron对PyTorch、TensorFlow、TorchScript、OpenVINO、Torch、Vitis AI、kmodel、Arm NN、BigDL、Chainer、Deeplearning4j、MediaPipe、ML.NET和scikit learn提供实验支持。
官方地址:https://github.com/lutzroeder/netron
Python Server: Run
pip install netron
andnetron [FILE]
ornetron.start('[FILE]')
import torchvision.models as models
import torch
# 定义数据+网络
data = torch.randn(2, 3, 256, 256)
model = models.resnet34()
# 导出
torch.onnx.export(
model,
data,
'model.onnx',
export_params=True,
opset_version=8,
)
import onnx
import onnx.utils
import onnx.version_converter
# 增加维度信息
model_file = 'model.onnx'
onnx_model = onnx.load(model_file)
onnx.save(onnx.shape_inference.infer_shapes(onnx_model), model_file)