二维离散点平面圆的拟合

该代码示例展示了如何通过最小二乘法对二维平面上的离散点进行圆拟合。程序包括读取外部文本数据、创建离散点、主程序实现以及调用的Circlefit函数,该函数计算圆心坐标(X0, Y0)和半径R。最后,代码将拟合的圆绘制出来进行验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

程序适用于二维离散点在平面内的圆拟合,其中离散点为nx2的数列,n>=3。以下步骤1和步骤2选择任一即可。调用函数由最小二乘法推导得来。

代码

1.读取外部文本

代码如下(示例):

clear;clc;close all;
[FileNmae,PathName]=uigetfile({'*.*'});
str=[PathName,FileNmae];
D=importdata(str);
D=D.data;

2.创建离散点

代码如下(示例):

x=[1-sqrt(2)/2 1 1+sqrt(2)/2];
y=[1-sqrt(2)/2 0 1-sqrt(2)/2];
D=[x' y'];

3.主程序

代码如下(示例):

[X0,Y0,R]=Circlefit(D);
theta=0:0.1:2*pi;  
Circle1=X0+R*cos(theta);  
Circle2=Y0+R*sin(theta);   
plot(Circle1,Circle2,'g','linewidth',1); 
xlabel('x轴');ylabel('y轴');
axis equal 
grid on

4.调用函数

代码如下(示例):

function [X0,Y0,R]=Circlefit(D0)
[row,~]=size(D0);
count_x=0;count_y=0;
count_xx=0;count_yy=0;
count_xy=0;
count_xxx=0;count_xyy=0;
count_xxy=0;count_yyy=0;
count_x_y=0;
for i=1:row
    count_xx=count_xx+D0(i,1)^2;
    count_yy=count_yy+D0(i,2)^2;
    count_x=count_x+D0(i,1);
    count_y=count_y+D0(i,2);
    count_xy=count_xy+D0(i,1)*D0(i,2);
    count_xxx=count_xxx+D0(i,1)^3;
    count_yyy=count_yyy+D0(i,2)^3;
    count_xyy=count_xyy+D0(i,1)*D0(i,2)^2;
    count_xxy=count_xxy+D0(i,1)^2*D0(i,2);
    count_x_y=count_x_y+D0(i,1)^2+D0(i,2)^2;
end
C=row*count_xx-count_x*count_x;
D=row*count_xy-count_x*count_y;
E=row*count_xxx+row*count_xyy-count_x_y*count_x;
G=row*count_yy-count_y*count_y;
H=row*count_xxy+row*count_yyy-count_x_y*count_y;

a=(D*H-E*G)/(C*G-D^2);
b=(D*E-C*H)/(C*G-D^2);
c=-(count_x_y+a*count_x+b*count_y)/row;
X0=-a/2;Y0=-b/2;
R=sqrt(a^2+b^2-4*c)/2;
end

5.步骤2数据拟合验证

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vittore Lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值