mse

MSE(Mean Squared Error)是一种常用的回归评估指标,用于衡量预测值与真实值之间的差距。MSE定义为:

MSE = ∑(真实值 - 预测值)^2 / n

其中,n表示数据的个数。MSE的值越小,表示预测的精度越高。MSE是一种平方损失函数,它倾向于惩罚大的差距。

例如,假设我们要预测一个人的体重,我们的预测值分别为80、85、90、95、100,真实值分别为82、87、92、97、102,则我们可以计算出MSE的值为:

MSE = (2^2 + 3^2 + 2^2 + 2^2 + 2^2) / 5 = 9.2

MSE的值越小,表示预测的精度越高。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值