MSE(Mean Squared Error)是一种常用的回归评估指标,用于衡量预测值与真实值之间的差距。MSE定义为:
MSE = ∑(真实值 - 预测值)^2 / n
其中,n表示数据的个数。MSE的值越小,表示预测的精度越高。MSE是一种平方损失函数,它倾向于惩罚大的差距。
例如,假设我们要预测一个人的体重,我们的预测值分别为80、85、90、95、100,真实值分别为82、87、92、97、102,则我们可以计算出MSE的值为:
MSE = (2^2 + 3^2 + 2^2 + 2^2 + 2^2) / 5 = 9.2
MSE的值越小,表示预测的精度越高。