一元函数微分学

一元函数微分学

导数与微分的概念

导数的概念

导数

设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0的某邻域内有定义,如果极限
lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{\Delta x\rightarrow 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} = \lim_{x\rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0} Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0)
存在,则称 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导,称极限值为函数在点 x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f'(x_0) f(x0)或者   d y   d x ∣ x = x 0 \frac{\,d y}{\,d x}|_{x=x_0} dxdyx=x0。如果极限不存在,则称 f ( x ) f(x) f(x)在点 x 0 x_0 x0处不可导。

左导数

设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0及其某个左邻域内有定义,若左极限
lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 \lim_{\Delta x\rightarrow 0^-}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} = \lim_{x\rightarrow x_0^-} \frac{f(x)-f(x_0)}{x-x_0} Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0)
存在,则称该极限的值为函数在 x 0 x_0 x0处的左导数,记为 f − ′ ( x 0 ) f_-'(x_0) f(x0)

右导数

设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0以及某个右邻域内有定义,若右极限
lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 \lim_{\Delta x\rightarrow 0^+}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} = \lim_{x\rightarrow x_0^+} \frac{f(x)-f(x_0)}{x-x_0} Δx0+limΔxf(x0+Δx)f(x0)=xx0+limxx0f(x)f(x0)
存在,则称该极限值为在点 x 0 x_0 x0处的右导数,记为 f + ′ ( x 0 ) f_+'(x_0) f+(x0)

  • 函数在某点可导的充要条件是函数在该点处的左导数和右导数均存在且相等
区间可导

如果 y = f ( x ) y=f(x) y=f(x)在开区间 ( a , b ) (a, b) (a,b)内每一点都可导,则 f ( x ) f(x) f(x)在区间 ( a , b ) (a, b) (a,b)内可导。若 f ( x ) f(x) f(x)在区间 ( a , b ) (a, b) (a,b)内可导,且 f + ′ ( a ) f_+'(a) f+(a) f − ′ ( b ) f_-'(b) f(b)都存在,则称 f ( x ) f(x) f(x)在区间 [ a , b ] [a, b] [a,b]上可导

导函数

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x) = \lim_{\Delta x\rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)

导数的几何意义

如果函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导,则曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))处必有切线,其切线方程为
y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_0) = f'(x_0)(x-x_0) yf(x0)=f(x0)(xx0)
法线方程为
y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-f(x_0) = -\frac{1}{f'(x_0)}(x-x_0), \quad f'(x_0) \neq 0 yf(x0)=f(x0)1(xx0),f(x0)=0

微分的概念

设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某一邻域内有定义,如果函数的增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)可以表示为
Δ y = A Δ x + o ( Δ x ) ( Δ x → 0 ) \Delta y = A\Delta x+o(\Delta x) \quad (\Delta x\rightarrow 0) Δy=AΔx+o(Δx)(Δx0)
其中 A A A为不依赖于 Δ x \Delta x Δx的常数。此时称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可微分,并且称 Δ y \Delta y Δy的线性主部 A Δ x A\Delta x AΔx为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的微分,记作   d y \,d y dy,即
  d y = A Δ x \,d y = A\Delta x dy=AΔx

  • 函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可微的充分必要条件是 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导,且有   d y = f ′ ( x 0 )   d x \,d y = f'(x_0)\, dx dy=f(x0)dx在点 x x x
  • 可微的充分必要条件是可导
  • 如果可微, Δ y \Delta y Δy   d y \, dy dy的关系为 Δ y =   d y + o ( Δ x ) \Delta y = \, dy+o(\Delta x) Δy=dy+o(Δx)

微分的几何意义

  • 微分   d y = f ′ ( x 0 )   d x \,d y = f'(x_0)\,d x dy=f(x0)dx在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)的切线上的点的纵坐标的增量
  • Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)上的点的纵坐标的增量
  • 当自变量的增量 ∣ Δ x ∣ |\Delta x| ∣Δx充分小时, Δ y ≈   d y \Delta y\approx \,d y Δydy

连续、可导、可微之间的关系

  • 可导 ⇔ \Leftrightarrow 可微
  • 可微一定连续,但连续不一定可微
  • 可导一定连续,但连续不一定可导

以上关系用定义均可证明

复合函数求导法则

u = ϕ ( x ) u=\phi(x) u=ϕ(x)在点 x x x可导,而 y = f ( u ) y=f(u) y=f(u)在对应点 u = ϕ ( x ) u=\phi(x) u=ϕ(x)可导,则复合函数 y = f ( ϕ ( x ) ) y=f(\phi(x)) y=f(ϕ(x))在点 x x x可导,并且
( f ( ϕ ( x ) ) ) ′ = f ′ ( u ) ϕ ′ ( x ) (f(\phi(x)))' = f'(u)\phi'(x) (f(ϕ(x)))=f(u)ϕ(x)

  d y   d x =   d y   d u ⋅   d u   d x \frac{\,d y}{\,d x} = \frac{\,d y}{\,d u}\cdot \frac{\,d u}{\,d x} dxdy=dudydxdu

上述定理用定义可证
lim ⁡ Δ x → 0 f [ ϕ ( x 0 + Δ x ) ] − f [ ϕ ( x 0 ) ] Δ x = lim ⁡ Δ x → 0 f [ ϕ ( x 0 + Δ x ) ] − f [ ( ϕ ( x 0 ) ) ] ϕ ( x 0 + Δ x ) − ϕ ( x 0 ) ⋅ lim ⁡ Δ x → 0 ϕ ( x 0 + Δ x ) − ϕ ( x 0 ) Δ x \lim_{\Delta x\rightarrow 0} \frac{f[\phi(x_0+\Delta x)]-f[\phi(x_0)]}{\Delta x} = \lim_{\Delta x\rightarrow 0}\frac{f[\phi(x_0+\Delta x)]-f[(\phi(x_0))]}{\phi(x_0+\Delta x)-\phi(x_0)}\cdot\lim_{\Delta x\rightarrow 0}\frac{\phi(x_0+\Delta x)-\phi(x_0)}{\Delta x} Δx0limΔxf[ϕ(x0+Δx)]f[ϕ(x0)]=Δx0limϕ(x0+Δx)ϕ(x0)f[ϕ(x0+Δx)]f[(ϕ(x0))]Δx0limΔxϕ(x0+Δx)ϕ(x0)

反函数求导法则

设函数 y = f ( x ) y=f(x) y=f(x)在区间I内单调、可导,且 f ′ ( x ) ≠ 0 f'(x)\neq 0 f(x)=0,则其反函数 x = ϕ ( y ) x=\phi(y) x=ϕ(y)在对应的区间内可导,并且
ϕ ′ ( x ) = 1 f ′ ( x ) \phi'(x) = \frac{1}{f'(x)} ϕ(x)=f(x)1
即:互为反函数的导数互为倒数

上述定理可用定义证明

隐函数求导法

y = f ( x ) y=f(x) y=f(x)是由方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0所确定的可导函数,求其导数   d y   d x \frac{\,d y}{\,d x} dxdy
方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0两边对 x x x求导数,牢记 y y y x x x的函数,从中解出   d y /   d x \,d y/\,d x dy/dx即可

分段函数求导数

  1. 对于定义域内每个分段区间内的函数,按常规求导法求出导函数
  2. 对于每个分段点处的导数,按导数的左、右导数定义计算,判断分段点处是否可导

高阶导数计算

[ u ( x ) v ( x ) ] ( n ) = ∑ i = 0 n C n i u ( n − i ) ( x ) ⋅ v ( i ) ( x ) [u(x)v(x)]^{(n)} = \sum_{i=0}^n C_n^i u^{(n-i)}(x)\cdot v^{(i)}(x) [u(x)v(x)](n)=i=0nCniu(ni)(x)v(i)(x)

微分的计算

若函数 y = f ( x ) y=f(x) y=f(x)可微,则其微分计算公式为
  d y = f ′ ( x )   d x \,d y = f'(x)\,dx dy=f(x)dx
即函数的微分等于函数的导数乘以自变量的微分,同时一阶微分形式具有不变性
  d y = f ′ [ ϕ ( x ) ]   d ϕ ( x ) = f ′ [ ϕ ( x ) ] ϕ ′ ( x )   d x \,d y = f'[\phi(x)]\,d \phi(x) = f'[\phi(x)]\phi'(x)\,d x dy=f[ϕ(x)]dϕ(x)=f[ϕ(x)]ϕ(x)dx

中值定理、不等式与零点问题

费马定理

f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0的某邻域 U ( x 0 ) U(x_0) U(x0)内有定义, f ( x 0 ) f(x_0) f(x0) f ( x ) f(x) f(x)的一个极大(极小)值,并且 f ′ ( x 0 ) f'(x_0) f(x0)存在,则 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

罗尔定理

f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,在开区间 ( a , b ) (a, b) (a,b)内可导,又设 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),则至少存在一点 ξ ∈ ( a , b ) \xi\in(a, b) ξ(a,b)使得 f ′ ( ξ ) = 0 f'(\xi) = 0 f(ξ)=0

  • 使用最值定理、费马定理可证明

拉格朗日中值定理

f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,在开区间 ( a , b ) (a, b) (a,b)内可导,则至少存在一点 ξ ∈ ( a , b ) \xi\in (a, b) ξ(a,b)使 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

  • 用罗尔定理,构造辅助函数可证明

柯西中值定理

f ( x ) , g ( x ) f(x), g(x) f(x),g(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,在开区间 ( a , b ) (a, b) (a,b)内可导,且 g ′ ( x ) ≠ 0 , x ∈ ( a , b ) g'(x)\neq 0, x\in (a, b) g(x)=0,x(a,b),则至少存在一点 ξ ∈ ( a , b ) \xi\in (a, b) ξ(a,b)使得
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

  • 用罗尔定理,构造辅助函数可证明

泰勒定理

具有拉格朗日余项的n阶泰勒公式

f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b] n n n阶连续导数,在开区间 ( a , b ) (a, b) (a,b)内有直到 n + 1 n+1 n+1阶导数, x 0 ∈ [ a , b ] , x ∈ [ a , b ] x_0\in[a, b], x\in[a, b] x0[a,b],x[a,b]是任意两点,则至少存在一点 ξ \xi ξ介于 x 0 x_0 x0 x x x之间,使得
f ( x ) = f ( x 0 ) + f ( 1 ) ( x 0 ) 1 ! ( x − x 0 ) + f ( 2 ) ( x 0 ) 2 ! ( x − x 0 ) 2 + … + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x) = f(x_0)+\frac{f^{(1)}(x_0)}{1!}(x-x_0)+\frac{f^{(2)}(x_0)}{2!}(x-x_0)^2+\ldots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+1!f(1)(x0)(xx0)+2!f(2)(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1称为拉格朗日余项

  • 泰勒多项式:希望用多项式去近似任何函数
  • 拉格朗日余项,可以用柯西中值定理证明
  • 可以用泰勒公式作近似计算
    • x 0 x_0 x0 x x x要尽量小
    • 误差不超过 M ∣ Δ x ∣ n + 1 ( n + 1 ) ! \frac{M|\Delta x|^{n+1}}{(n+1)!} (n+1)!M∣Δxn+1,也就是拉格朗日余项的上界
  • 近似计算还可以用二分法
具有佩亚诺余项的泰勒公式

如果将定理条件减弱为:设 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0具有 n n n阶导数, x x x为点 x 0 x_0 x0的充分小邻域的任意一点,则有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + … + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x) = f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\ldots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+1!f(x0)(xx0)++n!f(n)(x0)(xx0)n+Rn(x)
其中 R n ( x ) = o ( ( x − x 0 ) n ) R_n(x) = o((x-x_0)^n) Rn(x)=o((xx0)n)称为佩亚诺余项

导数应用

函数的极值

  • y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某邻域内有定义,如果对于该邻域内任何 x x x,恒有 f ( x ) ≤ f ( x 0 ) f(x)\leq f(x_0) f(x)f(x0)或( f ( x ) ≥ f ( x 0 ) f(x)\geq f(x_0) f(x)f(x0)),则称 x 0 x_0 x0 f ( x ) f(x) f(x)的一个极大值点(或极小值点),称 f ( x 0 ) f(x_0) f(x0) f ( x ) f(x) f(x)的极大值(或极小值)。极大(小)值统称为极值;极大(小)值点统称为极值点。导数为零的点称为函数的驻点。
  • y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导,如果 x 0 x_0 x0 f ( x ) f(x) f(x)的极值点,则 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

函数的最大值与最小值

连续函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上的最大最小值

  • 求出 f ( x ) f(x) f(x)在开区间 ( a , b ) (a, b) (a,b)内的驻点和不可导点 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn
  • 求出 f ( x ) f(x) f(x)在点 x 1 , … , x n x_1,\ldots, x_n x1,,xn和区间端点 a , b a, b a,b处的函数值
  • 比较函数值,找出其中的最大值和最小值

凸函数

设函数 f ( x ) f(x) f(x)在区间I上连续,如果对I上任意两点 x 1 , x 2 x_1, x_2 x1,x2恒有
f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2)
则称函数 f ( x ) f(x) f(x)在I上是凸函数。

拐点

  • 连续曲线弧上的凸和凹的分界点称为曲线弧的拐点
  • 拐点的必要条件:设 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处二阶可导,且点 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))为曲线 y = f ( x ) y=f(x) y=f(x)的拐点,则 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f′′(x0)=0
  • 第一充分条件:设 y = f ( x ) y=f(x) y=f(x)在某去心邻域内二阶可导,且 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f′′(x0)=0
    • f ′ ′ ( x ) f''(x) f′′(x) x 0 x_0 x0左右两侧异号,则点 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))为曲线 y = f ( x ) y=f(x) y=f(x)的拐点
  • 第二充分条件:设 y = f ( x ) y=f(x) y=f(x)在某去心邻域内三阶可导,且 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f′′(x0)=0
    • f ′ ′ ′ ( x 0 ) ≠ 0 f'''(x_0)\neq 0 f′′′(x0)=0,则 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))为曲线的拐点

渐进线

  • 水平渐近线:
    • lim ⁡ x → ∞ f ( x ) = A \lim_{x\rightarrow \infty} f(x)=A limxf(x)=A(或 lim ⁡ x → − ∞ f ( x ) = A \lim_{x\rightarrow -\infty} f(x)=A limxf(x)=A,或 lim ⁡ x → + ∞ f ( x ) = A \lim_{x\rightarrow +\infty} f(x)=A limx+f(x)=A),那么 y = A y=A y=A是曲线 y = f ( x ) y=f(x) y=f(x)的水平渐近线
  • 铅直渐近线:
    • lim ⁡ x → ∞ f ( x ) = ∞ \lim_{x\rightarrow \infty} f(x)=\infty limxf(x)=(或 lim ⁡ x → − ∞ f ( x ) = ∞ \lim_{x\rightarrow -\infty} f(x)=\infty limxf(x)=,或 lim ⁡ x → + ∞ f ( x ) = ∞ \lim_{x\rightarrow +\infty} f(x)=\infty limx+f(x)=),那么 x = x 0 x=x_0 x=x0是曲线 y = f ( x ) y=f(x) y=f(x)的铅直渐近线
  • 斜渐近线:
    • lim ⁡ x → ∞ f ( x ) x = a \lim_{x\rightarrow \infty} \frac{f(x)}{x} = a limxxf(x)=a lim ⁡ x → ∞ [ f ( x ) − a x ] = b \lim_{x\rightarrow\infty}[f(x)-ax]=b limx[f(x)ax]=b(或 x → − ∞ x\rightarrow -\infty x,或 x → + ∞ x\rightarrow +\infty x+),那么 y = a x + + b y=ax++b y=ax++b是曲线 y = f ( x ) y=f(x) y=f(x)的斜渐近线
  • 13
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值