空间解析几何、多元函数微分

空间解析几何

空间平面与直线

平面方程

  1. 一般式: A x + B y + C z + D = 0 ( A 2 + B 2 + C 2 ≠ 0 ) Ax+By+Cz+D=0(A^2+B^2+C^2\neq 0) Ax+By+Cz+D=0(A2+B2+C2=0),其中 n = A i + B j + C k \mathbf{n} = A\mathbf{i}+B\mathbf{j}+C\mathbf{k} n=Ai+Bj+Ck为法向量
  2. 点法式:过点 M ( x 0 , y 0 , z 0 ) M(x_0, y_0, z_0) M(x0,y0,z0),且法向量 n = { A , B , C } \mathbf{n} = \{A, B, C\} n={A,B,C}的平面方程为
    A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0) = 0 A(xx0)+B(yy0)+C(zz0)=0
  3. 截距式:过三点 ( a , 0 , 0 ) , ( 0 , b , 0 ) , ( 0 , 0 , c ) (a, 0, 0), (0, b, 0), (0, 0, c) (a,0,0),(0,b,0),(0,0,c)的平面方程为
    x a + y b + z c = 1 \frac{x}{a}+\frac{y}{b}+\frac{z}{c} = 1 ax+by+cz=1
    其中 a , b , c a, b, c a,b,c分别为平面在坐标轴上的截距

直线方程

  1. 一般式(两平面的交线):
    { A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0 , \left\{ \begin{aligned} A_1x+B_1y+C_1z+D_1 = 0,\\ A_2x+B_2y+C_2z+D_2 = 0, \end{aligned} \right. {A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0,
  2. 对称式: l i + m j + n k l\mathbf{i}+m\mathbf{j}+n\mathbf{k} li+mj+nk是方向向量
    x − x 0 l = y − y 0 m = z − z 0 n \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n} lxx0=myy0=nzz0
  3. 参数式:过点 M ( x 0 , y 0 , z 0 ) M(x_0, y_0, z_0) M(x0,y0,z0),且方向向量为 S = { l , m , n } S=\{l, m, n\} S={l,m,n}的方程为
    { x = x 0 + l t , y = y 0 + m t , z = z 0 + n t \left\{ \begin{aligned} x = x_0+lt,\\ y = y_0+mt,\\ z = z_0+nt \end{aligned} \right. x=x0+lt,y=y0+mt,z=z0+nt

平面和直线的位置关系

无论是平面和平面的位置关系,还是直线与平面的位置关系,抑或是直线与直线的位置关系。都是在考虑方向向量的位置关系和法向量的位置关系,因此只需要记住两点即可

  • 向量垂直则有 a ⋅ b = 0 \mathbf{a}\cdot\mathbf{b} = 0 ab=0
  • 向量平行则有 a × b = 0 \mathbf{a}\times\mathbf{b} = 0 a×b=0

点到面的距离

( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0)到平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0的距离
d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d = \frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

  • A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0 D D D变化,平面则沿着法向量方向平移

点到直线的距离

( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0)到直线 x − x 1 l = y − y 1 m = z − z 1 n \frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n} lxx1=myy1=nzz1的距离为
d = ∣ ( x 1 − x 0 , y 1 − y 0 , z 1 − z 0 ) × ( l , m , n ) ∣ l 2 + m 2 + n 2 d = \frac{|(x_1-x_0, y_1-y_0, z_1-z_0)\times (l, m, n)|}{\sqrt{l^2+m^2+n^2}} d=l2+m2+n2 (x1x0,y1y0,z1z0)×(l,m,n)

  • 这个距离求法相当于是:平行四边形面积/底边长

多元函数极限微分

多元函数的极限与连续

重极限的概念

设函数 f ( x , y ) f(x, y) f(x,y)在开区域(或闭区域)D内有定义, P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0) D D D的内点或边界点,如果对任意给定的 ϵ > 0 \epsilon>0 ϵ>0 ∃ δ > 0 \exist \delta>0 δ>0,使得对满足不等式
0 < ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ 0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta 0<(xx0)2+(yy0)2 <δ
的一切的 P ( x , y ) ∈ D P(x, y)\in D P(x,y)D,都有 ∣ f ( x , y ) − A ∣ < ϵ |f(x, y)-A|<\epsilon f(x,y)A<ϵ,则称 A A A f ( x , y ) f(x, y) f(x,y) x → x 0 , y → y 0 x\rightarrow x_0, y\rightarrow y_0 xx0,yy0时的极限,记为 lim ⁡ x → x 0 , y → y 0 f ( x , y ) = A \lim_{x\rightarrow x_0, y\rightarrow y_0} f(x, y) = A limxx0,yy0f(x,y)=A

  • 二元函数重极限的定义是指定义域 D D D中的点 P ( x , y ) P(x, y) P(x,y)以任何方式趋近于点 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)时,函数 f ( x , y ) f(x, y) f(x,y)都无限趋近于同一常数 A A A
  • 证明重极限不存在常用的有效方法:
    • 沿两条不同的路径趋于 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)时, f ( x , y ) f(x, y) f(x,y)趋于不同常数
    • 沿某条路径趋于 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)时, f ( x , y ) f(x, y) f(x,y)的极限不存在

二元函数连续的概念

设函数 f ( x , y ) f(x, y) f(x,y)在开区域(或闭区域) D D D内有定义, P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0) D D D的内点或边界点,且 P 0 ∈ D P_0\in D P0D,如果 lim ⁡ x → x 0 , y → y 0 f ( x , y ) = f ( x 0 , y 0 ) \lim_{x\rightarrow x_0, y\rightarrow y_0} f(x, y) = f(x_0, y_0) limxx0,yy0f(x,y)=f(x0,y0),则称函数 f ( x , y ) f(x, y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)处连续。

多元连续函数的性质

  • 连续函数的和、差、积、商(分母不为零)仍是连续函数,连续函数的复合函数仍为连续函数。
  • 最大最小值定理:在有界闭区域 D D D上的连续函数,在该区域 D D D上有最小值和最大值。
  • 介值定理:在有界闭区域 D D D上的连续函数,可取到它在该区域上的最小值和最大值之间的任何值

多元函数微分

二元函数的偏导数

设函数 z = f ( x , y ) z = f(x, y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)的某一邻域内有定义,如果
lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\rightarrow 0} \frac{f(x_0+\Delta x, y_0)-f(x_0, y_0)}{\Delta x} Δx0limΔxf(x0+Δx,y0)f(x0,y0)
存在,则称此极限为函数 z = f ( x , y ) z = f(x, y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)处对 x x x的偏导数,记为 f x ′ ( x 0 , y 0 ) f'_x(x_0, y_0) fx(x0,y0) ∂ f ( x 0 , y 0 ) / ∂ x \partial f(x_0, y_0)/\partial x f(x0,y0)/x

  • 偏导数的几何意义:表示曲面 z = f ( x , y ) z=f(x, y) z=f(x,y)与平面 y = y 0 y=y_0 y=y0的交线在点 M 0 ( x 0 , y 0 , f ( x 0 , y 0 ) ) M_0(x_0, y_0, f(x_0, y_0)) M0(x0,y0,f(x0,y0))处的切线 T x T_x Tx x x x轴的斜率

二元函数的全微分

如果函数 z = f ( x , y ) z = f(x, y) z=f(x,y)在点 ( x , y ) (x, y) (x,y)处的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z = f(x+\Delta x, y+\Delta y)-f(x, y) Δz=f(x+Δx,y+Δy)f(x,y)可表示为
Δ z = A Δ x + B Δ + o ( ρ ) \Delta z = A\Delta x+B\Delta+o(\rho) Δz=AΔx+BΔ+o(ρ)
其中 A , B A, B A,B不依赖于 Δ x , Δ y \Delta x, \Delta y Δx,Δy,而仅与 x , y x, y x,y有关, ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho = \sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 ,则称函数 z = f ( x , y ) z = f(x, y) z=f(x,y)在点 ( x , y ) (x, y) (x,y)可微, A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy称为函数 z = f ( x , y ) z=f(x, y) z=f(x,y)在点 ( x , y ) (x, y) (x,y)的全微分,记为
  d z = A   d x + B   d y \,d z = A\,d x+B\,d y dz=Adx+Bdy

  • 全微分存在的必要条件:该点的偏导数均存在
  • 全微分存在的充分条件,该点的偏导数连续
  • 注意,在多元函数中,一阶偏导数都存在,无法得到该点函数连续
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值