luogu1309 瑞士轮(NOIP2011普及组第3题)

luogu1309  瑞士轮(NOIP2011普及组第3题)

时空限制    1000ms/128MB

题目背景

在双人对决的竞技性比赛,如乒乓球、羽毛球、国际象棋中,最常见的赛制是淘汰赛和循环赛。前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高。后者的特点是较为公平,偶然性较低,但比赛过程往往十分冗长。

本题中介绍的瑞士轮赛制,因最早使用于1895年在瑞士举办的国际象棋比赛而得名。它可以看作是淘汰赛与循环赛的折中,既保证了比赛的稳定性,又能使赛程不至于过长。

题目描述

2*N 名编号为 1~2N 的选手共进行R 轮比赛。每轮比赛开始前,以及所有比赛结束后,都会按照总分从高到低对选手进行一次排名。选手的总分为第一轮开始前的初始分数加上已参加过的所有比赛的得分和。总分相同的,约定编号较小的选手排名靠前。

每轮比赛的对阵安排与该轮比赛开始前的排名有关:第1 名和第2 名、第 3 名和第 4名、……、第2K – 1 名和第 2K名、…… 、第2N – 1 名和第2N名,各进行一场比赛。每场比赛胜者得1 分,负者得 0 分。也就是说除了首轮以外,其它轮比赛的安排均不能事先确定,而是要取决于选手在之前比赛中的表现。

现给定每个选手的初始分数及其实力值,试计算在R 轮比赛过后,排名第 Q 的选手编号是多少。我们假设选手的实力值两两不同,且每场比赛中实力值较高的总能获胜。

输入输出格式

输入格式:

输入文件名为swiss.in 。

输入的第一行是三个正整数N、R 、Q,每两个数之间用一个空格隔开,表示有 2*N 名选手、R 轮比赛,以及我们关心的名次 Q。

第二行是2*N 个非负整数s1, s2, …, s2N,每两个数之间用一个空格隔开,其中 si 表示编号为i 的选手的初始分数。 第三行是2*N 个正整数w1 , w2 , …, w2N,每两个数之间用一个空格隔开,其中 wi 表示编号为i 的选手的实力值。

输出格式:

输出文件名为swiss.out。

输出只有一行,包含一个整数,即R 轮比赛结束后,排名第 Q 的选手的编号。

输入输出样例

输入样例#1:

2 4 2
7 6 6 7
10 5 20 15

输出样例#1:

1

说明

【样例解释】

【数据范围】

对于30% 的数据,1 ≤ N ≤ 100;

对于50% 的数据,1 ≤ N ≤ 10,000 ;

对于100%的数据,1 ≤ N ≤ 100,000,1 ≤ R ≤ 50,1 ≤ Q ≤ 2N,0 ≤ s1, s2, …, s2N≤10^8,1 ≤w1, w2 , …, w2N≤ 10^8。

noip2011普及组第3题。

 

代码

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 100005;
struct person{
	int id,sco,pow;
};
person a[2*N],win[N],lose[N];

bool comp(const person &x, const person &y){
	if (x.sco!=y.sco) return x.sco>y.sco;
	return x.id<y.id;
}

void swiss(int n){
	int i,j,k;
	for (k=i=j=1; k<=n; k++)
		if (a[2*k-1].pow>a[2*k].pow) a[2*k-1].sco++,win[i++]=a[2*k-1],lose[j++]=a[2*k];
		else a[2*k].sco++,win[i++]=a[2*k],lose[j++]=a[2*k-1];
	for (k=i=j=1; i<=n&&j<=n; k++)
		if (comp(win[i],lose[j])) a[k]=win[i++];
		else a[k]=lose[j++];
	while (i<=n) a[k++]=win[i++];
	while (j<=n) a[k++]=lose[j++];
}

int main(){
	int n,r,q;
	cin>>n>>r>>q;
	for (int i=1; i<=2*n; i++){
		a[i].id = i;
		cin>>a[i].sco;
	}
	for (int i=1; i<=2*n; i++) cin>>a[i].pow;
	sort(a+1,a+2*n+1,comp);
	for (int i=1; i<=r; i++) swiss(n);
	cout<<a[q].id<<endl;
	return 0;
}
<think>好的,用户需要寻找NOIP 2002普及组P1036选数问的测试数据下载。首先,我应该先确认用户的需求。P1036是洛谷上的目编号,用户可能是在做时需要测试数据来验证自己的代码是否正确,或者想通过大量数据测试程序的性能。 接下来,我应该考虑如何获取这些测试数据。通常,NOIP的官方测试数据可能不会公开,但像洛谷这样的在线评测平台通常会提供一些测试用例,尤其是样例输入输出。不过,用户可能需要更多的测试数据,比如边界情况或者较大的输入,来确保程序的正确性。 根据提供的引用内容,用户的问涉及到选数问的不同实现方法,比如递归和位运算枚举。引用[3]中的Python代码使用位运算生成子集,而引用[2]和[4]提到了DFS的方法。这可能意味着用户已经尝试了不同的解法,但需要测试数据来验证。 首先,我应该检查是否在洛谷的目页面可以直接找到测试数据。通常,洛谷不会直接提供所有测试数据下载,但会给出样例输入和输出。例如,样例输入可能是n=4,k=3,数列是3,7,12,19,输出符合条件的素数和的组合数。用户可能需要更多的测试用例,比如较大的n和k,或者特定组合的情况。 如果官方数据不可用,可以考虑其他途径。比如,用户社区或竞赛选手分享的测试数据,或者在GitHub等平台上寻找。另外,用户可能需要自己生成一些测试用例,尤其是边界情况,比如k=0(虽然目中k应该至少为1),n等于k的情况,或者所有数加起来为素数的情况。 此外,用户可能需要测试数据来验证他们的代码是否处理了重复元素或负数,但根据目描述,通常输入的是正整数。需要确认目的具体约束条件,比如n的范围,k的范围,以及数值的大小,这些信息可能影响测试数据的生成。 总结下来,用户的真实需求可能是希望获得多个测试用例,包括样例和边界情况,以确保他们的解法正确。因此,我应该建议他们查看洛谷的目讨论区,或者使用在线资源生成自己的测试数据,同时提醒他们注意目中的约束条件,比如n≤20,k<n,数值≤5×10^5等,从而生成合适的测试案例。 另外,用户引用的代码中,引用[3]的Python代码使用了位运算枚举子集,这可能在大n时效率不高,但目中n的范围较小(比如n≤20),所以可行。用户可能需要测试数据来验证不同解法的正确性和效率,尤其是当n接近20时的情况。 最后,我应该提供几种获取测试数据的方法,包括官方渠道、社区资源和自行生成,并给出具体的例子,帮助用户自己创建有效的测试用例。</think>关于NOIP 2002普及组P1036选数问的测试数据,以下是分步说明: ### 1. 官方渠道获取 NOIP历届试的测试数据通常**不公开**,但可通过以下方式尝试获取: - **联系NOI竞赛组织方**:通过中国计算机学会(CCF)官网或邮箱咨询[^1]。 - **省级信息学竞赛委员会**:部分省份会保留历史数据,需提供参赛身份证明。 ### 2. 在线评测平台获取 洛谷(Luogu)等平台提供**部分测试用例**: - 访问[洛谷P1036目页](https://www.luogu.com.cn/problem/P1036),查看“样例输入/输出”[^2]。 - 样例输入: ``` 4 3 3 7 12 19 ``` 样例输出: ``` 1 ``` ### 3. 自行生成测试数据 根据目约束($n \leq 20$,数值$\leq 5 \times 10^5$),可构造以下测试案例: #### 边界测试1(最小输入) ``` 2 1 2 3 ``` 输出应为`2`(和为2或3,均为素数)[^3]。 #### 边界测试2(最大n) ``` 20 10 1 1 1 ...(共20个1) ``` 和为10,非素数,输出`0`[^3]。 ### 4. 社区资源 - **GitHub开源项目**:搜索关键词`NOIP2002-P1036-testdata`,部分选手会分享数据。 - **竞赛论坛**:如Codeforces讨论区或信息学竞赛QQ群,请求其他选手提供。 ### 5. 代码验证技巧 若无法获取完整数据,可通过**对拍**验证代码: 1. 写一个暴力枚举程序(如引用[3]的位运算解法)作为基准[^3]。 2. 用DFS优化代码(如引用[2]的方法)生成结果。 3. 随机生成多组数据,对比两者输出是否一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值