结构光多频外差解相位:基于相位的单目与双目结构光编解码及三维重建系统,基于结构光编解码的多频外差解相位技术在三维重建中的应用

结构光多频外差解相位
结构光编解码,可用于基于相位的单目或者双目结构光三维重建系统

ID:19127734374253697

提棒迎战


结构光技术(Structured Light Technology)是一种基于光的三维重建方法,通过对待测物体进行结构光编解码,可以实现物体的三维形态信息获取。在结构光技术中,多频外差解相位(Multi-frequency phase-shifting)是一种常用的相位获取方法,它通过使用多个频率的光源进行编码,结合调制解调技术,可以实现对待测物体的相位信息进行高精度的提取。

在基于相位的单目或者双目结构光三维重建系统中,结构光编解码是一个关键的步骤。结构光编码是指通过对光源进行编码,将光的信息传递到待测物体上。常见的编码方法包括二进制编码、格雷码编码等。编码后的光源照射到待测物体上,物体表面对光的反射或者透射产生变化,这些变化通过相机捕捉到的图像进行解码,从而得到物体表面的三维形态信息。

而结构光解相位则是指通过对编码后的光源进行解码,从而得到物体表面的相位信息。通过多频外差解相位的方法,我们可以利用不同频率的光源在空间中形成不同的光场,再通过相机捕捉到的图像进行相位差的计算,进而获取到物体表面的相位信息。相对于传统的相位获取方法,多频外差解相位具有更高的精度和更强的抗噪性,能够有效地提高重建结果的质量。

基于相位的单目或者双目结构光三维重建系统可以广泛应用于工业制造、医学影像、文化遗产保护等领域。在工业制造中,结构光三维重建可以用于产品的快速检测和测量,帮助提高生产效率和产品质量。在医学影像领域,结构光三维重建可以用于牙齿的正畸和颌面外科手术的模拟,为医生的诊断和治疗提供重要的参考。在文化遗产保护方面,结构光三维重建可以用于古建筑和文物的数字化保护,帮助传承和研究人员更好地了解和保护我们的历史遗产。

总之,结构光编解码作为基于相位的单目或者双目结构光三维重建系统中的关键技术,为我们获取物体的三维形态信息提供了有效的手段。多频外差解相位作为一种常用的相位获取方法,具有高精度和抗噪性强的特点,能够满足高质量的三维重建需求。结构光技术在工业制造、医学影像、文化遗产保护等领域具有广阔的应用前景,为相关行业的发展和进步提供强有力的支撑。

【相关代码,程序地址】:http://fansik.cn/734374253697.html

### 结构光多频外差相位技术原理 结构光多频外差相位是一种先进的相位测量技术,主要用于高精度三维重建。该方法利用多个不同频率的正弦条纹图案进行投影,并通过相移法获取物体表面的相位信息。 #### 正弦条纹生成投影 为了实现精确的相位测量,通常会生成两个或更多不同频率的正弦条纹图像并将其投射到待测物体上[^1]。这些条纹会在物体表面上形成特定的干涉模式,从而携带有关物体形状的信息。 #### 相位调制调 当正弦条纹被投影至目标对象时,由于物体表面的高度变化,反射回来的光线会发生相应的变化。这种变化可以通过相机捕捉下来,并经过处理得到原始相位分布图。对于每一个像素点来说,可以采用四步或多步相移算法来提高测量精度和稳定性[^4]。 #### 高低频组合 在实际操作过程中,往往会选择一组高低不同的频率来进行编码。具体而言,较低频率能够覆盖更大的范围但分辨率有限;较高频率则相反——虽然能提供更好的细节描述能力却容易受到噪声干扰。因此,将两者结合起来不仅可以扩大量程还能提升整体性能[^5]。 #### 差频相位计算 核心在于利用上述提到的不同频率之间的差异特性。即先分别获得各个独立频率下的绝对相位值φ_low 和 φ_high ,再通过对这两个结果取模运算得出最终所需的唯一确定性的全局相位Φ: \[ \Phi = (\phi_{high} - k\cdot T)\mod{2\pi}\] 其中 \(k\) 是整数倍周期数目\(T=2\pi/frequency_ratio\)表示高低频比例关系所对应的周期长度。 ```python import numpy as np def calculate_unwrapped_phase(low_freq_phase, high_freq_phase, freq_ratio): """ 计算未包裹相位 参数: low_freq_phase (ndarray): 低频相位数据 high_freq_phase (ndarray): 高频相位数据 freq_ratio (float): 频率比率 返回: ndarray: 展开后的全局相位 """ period_length = 2 * np.pi / freq_ratio unwrapped_phases = [] for phi_l, phi_h in zip(low_freq_phase.flatten(), high_freq_phase.flatten()): diff = phi_h - round(phi_h/period_length)*period_length unwrapped_phases.append(diff) return np.array(unwrapped_phases).reshape(low_freq_phase.shape) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值