振动力学学习笔记: 单自由度系统(一) 单自由度线性系统的数学模型

前情提要
绪论(一) 振动力学的基本概念
绪论(二) 振动力学的基本问题与基本方法
绪论(三) 简谐振动及其三角函数、矢量、复数表示法

理想元件(一) 弹性元件及其简化模型
理想元件(二) 阻尼元件及其简化模型
理想元件(三) 质量元件及其简化模型



本节讨论对象:单自由度线性系统 (linear system with one degree of freedom)

  • 单自由度 系统在振动过程中任意瞬时的几何位置只需要一个独立坐标就能描述
  • 线性 质量恒定,阻尼力和弹性恢复力分别和速度和位移呈线性关系

振动系统的简化

在振动系统中,只有质量及其分布运动阻尼恢复力特性等少数参数对振动特性及其响应起主导作用

集中参数模型 (lumped parameter model) = 质阻弹模型 (mass-spring-damper model)

三种理想元件

  • 质量块 (质量大小 m m m)
  • 弹簧 (刚度系数 k k k)
  • 阻尼 (阻尼系数 c c c) (一些极简模型可以没有阻尼)

两种常用简化模型 质量弹簧模型 (没有阻尼的情况)、质阻弹模型
1-常见的集中参数模型:质量弹簧模型(左)、质阻弹模型(右)


单自由度线性系统振动微分方程

自由振动微分方程

m x ¨ ( t ) + c x ˙ ( t ) + k x ( t ) = 0 (1) m\ddot{x}\left(t\right)+c\dot{x}\left(t\right)+kx\left(t\right)=0\tag{1} mx¨(t)+cx˙(t)+kx(t)=0(1) 这是一个二阶常系数齐次线性微分方程
1-自由振动系统


力激励振动微分方程

m x ¨ ( t ) + c x ˙ ( t ) + k x ( t ) = F ( t ) (2) m\ddot{x}\left(t\right)+c\dot{x}\left(t\right)+kx\left(t\right)=F\left(t\right)\tag{2} mx¨(t)+cx˙(t)+kx(t)=F(t)(2) 这是一个二阶常系数非齐次线性微分方程,其对应的齐次方程为同一个系统的自由振动方程 ( 1 ) (1) (1)
2-力激励的单自由度线性系统


基础激励振动微分方程

基础激励 来自基础的扰动,可以理解为参考坐标系不是地基时地基的振动,记为 x ˉ ( t ) \bar{x}(t) xˉ(t)
m x ¨ ( t ) + c x ˙ ( t ) + k x ( t ) = c x ˉ ˙ ( t ) + k x ˉ ( t ) (3) m\ddot{x}\left(t\right)+c\dot{x}\left(t\right)+kx\left(t\right)=c\dot{\bar{x}}\left(t\right)+k\bar{x}\left(t\right)\tag{3} mx¨(t)+cx˙(t)+kx(t)=cxˉ˙(t)+kxˉ(t)(3) 这也是一个二阶常系数非齐次线性微分方程,其对应的齐次方程为同一个系统的自由振动方程 ( 1 ) (1) (1)
3-基础激励下的单自由度振动系统


静力对振动微分方程的影响

静力指的是不随时间变化的力,最常见的就是重力。重力 m g mg mg 使弹簧发生 δ st \delta_\text{st} δst 的静变形。取平衡位置为坐标原点,则弹簧的变形量为 x + δ st x+\delta_\text{st} x+δst
m x ¨ ( t ) + c x ˙ ( t ) + k [ x ( t ) + δ st ] = F ( t ) + m g m\ddot{x}\left(t\right)+c\dot{x}\left(t\right)+k\left[x\left(t\right)+\delta_\text{st}\right]=F\left(t\right)+mg mx¨(t)+cx˙(t)+k[x(t)+δst]=F(t)+mg 由于 k δ st = m g k\delta_\text{st}=mg kδst=mg m x ¨ ( t ) + c x ˙ ( t ) + k x ( t ) = F ( t ) m\ddot{x}\left(t\right)+c\dot{x}\left(t\right)+kx\left(t\right)=F\left(t\right) mx¨(t)+cx˙(t)+kx(t)=F(t) 和式 ( 2 ) (2) (2) 完全相同。可见系统受静力时,只需把坐标原点挪动到静力平衡点,系统运动方程就不受静力的影响
4-考虑静力作用的单自由度振动系统


一般振动系统的线性化

线性化假设

  • 小变形 比如 理想元件(一) 弹性元件及其简化模型 中把悬臂梁和简支梁简化为线弹性元件,就用到了小变形假设,变形很大的时候是不适用的
  • 微振幅 振动的幅度相比于系统的尺寸很小
    举个栗子 微摆系统 ( θ \theta θ 非常小的情况)
    外力对固定铰 O O O 的力矩等于转动惯量和角加速度的乘积
    − m g l sin ⁡ θ = m l 2 θ ¨ -mgl\sin\theta=ml^2\ddot{\theta} mglsinθ=ml2θ¨ 显然这不是线性的,因为有 sin ⁡ θ \sin \theta sinθ 这个非线性项。但是在微振幅前提下有 sin ⁡ θ ∼ θ \sin{\theta}\sim\theta sinθθ,因此原式可简化为 l θ ¨ + g θ = 0 l\ddot{\theta}+g\theta=0 lθ¨+gθ=0
    5-微振幅举例:微摆系统

参考文献

[1] 鲍文博,白泉,陆海燕.振动力学基础与MATLAB应用[M].北京:清华大学出版社,2015:16~36.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值