振动力学学习笔记: 单自由度系统(二) 单自由度无阻尼系统的自由振动

前情提要
绪论(一) 振动力学的基本概念
绪论(二) 振动力学的基本问题与基本方法
绪论(三) 简谐振动及其三角函数、矢量、复数表示法

理想元件(一) 弹性元件及其简化模型
理想元件(二) 阻尼元件及其简化模型
理想元件(三) 质量元件及其简化模型

单自由度系统(一) 单自由度线性系统的数学模型



本节讨论对象:单自由度无阻尼系统的自由振动

  • 单自由度 (one degree of freedom) 系统在振动过程中任意瞬时的几何位置只需要一个独立坐标就能描述
  • 无阻尼 (undamped) 阻尼力为 0 0 0,即系统微分方程中速度 (即 x ˙ \dot x x˙) 项的系数为 0 0 0
  • 自由振动 (free vibration) 振动系统仅受到初始条件 (初始位移、初始速度) 的激励,在后续的振动过程中没有其他激励

单自由度无阻尼系统自由振动微分方程的确定方法

直接法

根据定义直接列写运动微分方程。其形式为 m x ¨ ( t ) + k x ( t ) = 0 (1) m\ddot x(t)+kx(t)=0\tag{1} mx¨(t)+kx(t)=0(1) 详见 单自由度系统(一) 单自由度线性系统的数学模型

直接法适合只有一个弹性元件和一个质量元件的模型,以及等效刚度 (详见 理想元件(一) 弹性元件及其简化模型) 和等效质量 (详见 理想元件(三) 质量元件及其简化模型) 易于计算的简单模型。


能量法

无阻尼自由振动系统属于 保守系统,在振动过程中,系统始终无能量输入也无能量损失,系统机械能 (包括动能、弹性势能、重力势能) 守恒 E = T + V s + V g = const (2) E=T+V_\text{s}+V_\text{g}=\text{const}\tag{2} E=T+Vs+Vg=const(2)

  • 系统动能 T = ∑ 1 2 m i x ˙ i 2 = 1 2 m eq x ˙ 2 (3) T=\sum\frac{1}{2}m_i\dot{x}_i^2=\frac{1}{2}m_\text{eq}\dot{x}^2\tag{3} T=21mix˙i2=21meqx˙2(3)
  • 系统弹性势能 V s = ∑ 1 2 k j δ j 2 = 1 2 k eq x 2 (4) V_\text{s}=\sum{\frac{1}{2}k_j \delta _j^2}=\frac{1}{2}k_\text{eq}x^2\tag{4} Vs=21kjδj2=21keqx2(4)
  • 系统重力势能 V g = ∑ m i g h i = m g h (5) V_\text{g}=\sum m_igh_i=mgh\tag{5} Vg=mighi=mgh(5) 其中 m m m 为总质量 (注意其与 m eq m_\text{eq} meq 未必相同), h h h 为重心高度。

值得一提的是,公式 ( 1 ) (1) (1) ( 3 ) (3) (3) ( 4 ) (4) (4) 中的参数都是广义参数

  • m m m 代表广义质量,在平移振动系统中量纲为 [M] \text{[M]} [M];在角振动系统中就是转动惯量 J J J,量纲为 [M] ⋅ [L] 2 \text{[M]}\cdot\text{[L]}^2 [M][L]2
  • x x x 代表广义位移,在平移振动系统中量纲为 [L] \text{[L]} [L];在角振动系统中就是角位移 θ \theta θ,量纲为 1 1 1
  • k k k 代表广义弹簧刚度,在平移振动系统中量纲为 [M] ⋅ [T] − 2 \text{[M]}\cdot\text{[T]}^{-2} [M][T]2;在角振动系统中就是扭转弹簧刚度,量纲为 [M] ⋅ [L] ⋅ [T] − 2 \text{[M]}\cdot\text{[L]}\cdot\text{[T]}^{-2} [M][L][T]2
  • δ \delta δ 代表广义变形量,在平移振动系统中量纲为 [L] \text{[L]} [L];在角振动系统中就是角变形量,量纲为 1 1 1

根据式 ( 3 ) (3) (3) ( 4 ) (4) (4) ( 5 ) (5) (5) 列写出式 ( 2 ) (2) (2),然后对其关于时间求导,并消去一个 x ˙ \dot x x˙ (不恒为 0 0 0),即可获取系统的运动微分方程,其一般形式为 d d t ( T + V s + V g ) = 0 (6) \frac{\text{d}}{\text{d}t}\left(T+V_\text{s}+V_\text{g}\right)=0\tag{6} dtd(T+Vs+Vg)=0(6)

能量法特别适合用于处理具有多个弹性元件或多个惯性元件的系统,以及平移振动和角振动并存的系统


举个栗子 弹簧摆杆系统 (具有多个惯性元件,且平移振动和角振动并存)
自由端质量 m m m
摆杆长度 L L L,质心位于铰接点 O O O 处,相对于铰接点 O O O 的转动惯量 J J J
弹簧刚度 k k k,连接点和铰接点距离 a a a
3-2-1 能量法列写单自由度无阻尼自由振动系统微分方程
动能 T = 1 2 m ( l θ ˙ ) 2 + 1 2 J θ ˙ 2 = 1 2 ( m l 2 + J ) θ ˙ 2 T=\frac{1}{2}m\left(l\dot\theta\right)^2+\frac{1}{2}J\dot\theta^2=\frac{1}{2}\left(ml^2+J\right)\dot\theta^2 T=21m(lθ˙)2+21Jθ˙2=21(ml2+J)θ˙2 弹性势能 V s = 1 2 k ( a θ ) 2 = 1 2 k a 2 θ 2 V_\text{s}=\frac{1}{2}k\left(a\theta\right)^2=\frac{1}{2}ka^2\theta^2 Vs=21k(aθ)2=21ka2θ2 重力势能 V g = m g l cos ⁡ θ V_\text{g}=mgl\cos\theta Vg=mglcosθ 根据式 ( 6 ) (6) (6) d d t ( T + V s + V g ) = ( m l 2 + J ) θ ˙ θ ¨ + k a 2 θ θ ˙ + m g l sin ⁡ θ θ ˙ = 0 \frac{\text{d}}{\text{d}t}\left(T+V_\text{s}+V_\text{g}\right)=\left(ml^2+J\right)\dot\theta\ddot\theta+ka^2\theta\dot\theta+mgl\sin\theta\dot\theta=0 dtd(T+Vs+Vg)=(ml2+J)θ˙θ¨+ka2θθ˙+mglsinθθ˙=0 因为存在 sin ⁡ θ \sin\theta sinθ 这个非线性项,这个振动系统不是线性的。但在微振幅前提下,因为 sin ⁡ θ ∼ θ \sin\theta\sim\theta sinθθ,因此可以线性化为 ( m l 2 + J ) θ ˙ θ ¨ + ( k a 2 + m g l ) θ θ ˙ = 0 \left(ml^2+J\right)\dot\theta\ddot\theta+\left(ka^2+mgl\right)\theta\dot\theta=0 (ml2+J)θ˙θ¨+(ka2+mgl)θθ˙=0


瑞利法

前面所有的分析都没有考虑弹簧的质量,等价于忽略了弹簧的动能。实际工程中,弹性元件的质量往往比质量块小很多,忽略其质量一般不会引起大的误差。但有时也会存在弹性元件质量比较大的情况,那忽略弹簧的质量就会引起较大的误差。为解决这个问题,瑞利 (Rayleigh) 提出了瑞利法,估计了弹簧分布质量对系统振动特性的影响。


瑞利法的基本假设

  1. 弹簧上各点的变形按照线性规律变化,即固定端位移为 0 0 0、与质量块连接端位移最大 (等于质量块的位移),两端点之间所有点的位移按比例变化
  2. 弹簧质量沿轴线均匀分布

可见,瑞利法也是一种近似方法,但准确度稍高些,适合用于 弹性元件的质量相对于质量元件不够小,所以无法忽略,同时弹性元件的质量、刚度分布都比较均匀 的情况


瑞利法的计算方法

基于基本假设,计算弹簧的动能,加入到能量法的考虑中即可
也可根据根据动能相等的原则,把弹簧的质量等效到质量块处,计算出系统的等效质量


举个栗子
质量块质量 m m m
弹簧刚度 k k k,质量 m s m_\text{s} ms
3-2-2 瑞利法
弹性势能为 V = 1 2 k x 2 V=\frac{1}{2}kx^2 V=21kx2 质量块的动能为 T m = 1 2 m x ˙ 2 T_\text{m}=\frac{1}{2}m\dot x^2 Tm=21mx˙2 按照瑞利假设,弹簧距离固定端 l l l 处的位移为 x l / L xl/L xl/L,瞬时速度为 x ˙ l / L \dot xl/L x˙l/L,所以弹簧的动能为 T s = ∫ 0 L 1 2 d m ( x ˙ l L ) 2 = ∫ 0 L 1 2 m s d l L ( x ˙ l L ) 2 = m s x ˙ 2 2 L 3 ∫ 0 L l 2 d l = 1 6 m s x ˙ 2 T_\text{s}=\int_{0}^{L}\frac{1}{2}\text{d}m\left(\frac{\dot xl}{L}\right)^2=\int_{0}^{L}\frac{1}{2}\frac{m_\text{s}\text{d}l}{L}\left(\frac{\dot xl}{L}\right)^2=\frac{m_\text{s}\dot x^2}{2L^3}\int_{0}^{L}l^2\text{d}l=\frac{1}{6}m_\text{s}\dot x^2 Ts=0L21dm(Lx˙l)2=0L21Lmsdl(Lx˙l)2=2L3msx˙20Ll2dl=61msx˙2 根据式 ( 6 ) (6) (6) 可获取系统振动微分方程 d d t ( T m + T s + V ) = ( 1 2 m + 1 6 m s ) x ˙ 2 + 1 2 k x 2 = 0 \frac{\text{d}}{\text{d}t}\left(T_\text{m}+T_\text{s}+V\right)=\left(\frac{1}{2}m+\frac{1}{6}m_\text{s}\right)\dot x^2+\frac{1}{2}kx^2=0 dtd(Tm+Ts+V)=(21m+61ms)x˙2+21kx2=0 也可以用动能相等的原则直接计算系统的等效质量,即 1 2 m eq x ˙ 2 = T = T m + T s = 1 2 m x ˙ 2 + 1 6 m s x ˙ 2 \frac{1}{2}m_\text{eq}\dot x^2=T=T_\text{m}+T_\text{s}=\frac{1}{2}m\dot x^2+\frac{1}{6}m_\text{s}\dot x^2 21meqx˙2=T=Tm+Ts=21mx˙2+61msx˙2 解得等效质量 m eq = m + m s / 3 m_\text{eq}=m+m_\text{s}/3 meq=m+ms/3 可见弹簧 1 / 3 1/3 1/3 的质量对动能有贡献,当弹簧 1 / 3 1/3 1/3 的质量相对于质量块质量不可忽略时,我们的计算就需要考虑弹簧质量的影响。


单自由度无阻尼系统的自由振动解

单自由度无阻尼系统的运动微分方程 如式 ( 1 ) (1) (1) 所示,即 m x ¨ ( t ) + k x ( t ) = 0 m\ddot x(t)+kx(t)=0 mx¨(t)+kx(t)=0 这是一个二阶常系数线性齐次微分方程 [1],其特征方程为 m r 2 + k = 0 mr^2+k=0 mr2+k=0 特征根为一对共轭复根 r = ± k m i r=± \sqrt {\frac {k}{m}}i r=±mk i 所以齐次方程解的时域表达式通解为 x ( t ) = C 1 e i k m t + C 2 e − i k m t x(t)=C_1e^{i\sqrt{\frac{k}{m}}t}+C_2e^{-i\sqrt{\frac{k}{m}}t} x(t)=C1eimk t+C2eimk t 其中 C 1 C_1 C1 C 2 C_2 C2 为任意常数,由系统受到激励后的初始状态决定。代入欧拉公式 A e i θ = A ( cos ⁡ θ + i sin ⁡ θ ) A{{e}^{i\theta }} =A(\cos \theta +i\sin \theta) Aeiθ=A(cosθ+isinθ) e ± i k m t = cos ⁡ ( k m t ) ± i sin ⁡ ( k m t ) e^{\pm i\sqrt{\frac{k}{m}}t}=\cos\left(\sqrt{\frac{k}{m}}t\right)\pm i\sin\left(\sqrt{\frac{k}{m}}t\right) e±imk t=cos(mk t)±isin(mk t) 故有 x ( t ) = ( C 1 + C 2 ) cos ⁡ ( k m t ) + i ( C 1 − C 2 ) sin ⁡ ( k m t ) x(t)=\left(C_1+C_2\right)\cos\left(\sqrt{\frac{k}{m}}t\right)+i\left(C_1-C_2\right)\sin\left(\sqrt{\frac{k}{m}}t\right) x(t)=(C1+C2)cos(mk t)+i(C1C2)sin(mk t) 可以看出,随 C 1 C_1 C1 C 2 C_2 C2 的变化,系统振动的幅值和相位会有差异,但频率始终相同。这个固定的频率称为系统的 固有圆频率 = 自然圆频率 (natural angular frequency) (单位 rad / s \text{rad}/\text{s} rad/s) ω n = k m (7) \omega _\text{n}=\sqrt {\frac {k}{m}}\tag{7} ωn=mk (7)相应有 固有周期 = 自然周期 (natural cycle) (单位 s \text{s} s) T n = 2 π ω n = 2 π m k (8) T_\text{n}=\frac{2\pi}{\omega_\text{n}}=2\pi\sqrt{\frac{m}{k}}\tag{8} Tn=ωn2π=2πkm (8) 平移振动频率 (单位 1 / s 1/\text{s} 1/s Hz \text{Hz} Hz) f n = 1 T n = ω n 2 π = 1 2 π k m (9) f_\text{n}=\frac{1}{T_\text{n}}=\frac{\omega_\text{n}}{2\pi}=\frac{1}{2\pi}\sqrt{\frac{k}{m}}\tag{9} fn=Tn1=2πωn=2π1mk (9) X 1 = C 1 + C 2 X_1=C_1+C_2 X1=C1+C2 X 2 = i ( C 1 − C 2 ) X_2=i\left(C_1-C_2\right) X2=i(C1C2),则单自由度无阻尼系统振动方程的解可表示为 x ( t ) = X 1 cos ⁡ ω n t + X 2 sin ⁡ ω n t (10) x(t)=X_1\cos\omega_\text{n}t+X_2\sin\omega_\text{n}t\tag{10} x(t)=X1cosωnt+X2sinωnt(10) 其中 X 1 X_1 X1 X 2 X_2 X2 由初始条件确定。已知 t = 0 t=0 t=0 时系统的初位移为 x 0 x_0 x0,初速度为 v 0 v_0 v0,则有 x ( t = 0 ) = X 1 cos ⁡ ω n t + X 2 sin ⁡ ω n t = X 1 = x 0 x ˙ ( t = 0 ) = − ω n X 1 sin ⁡ ω n t + ω n X 2 cos ⁡ ω n t = ω n X 2 = v 0 \begin{aligned}x(t=0)&=X_1\cos\omega_\text{n}t+X_2\sin\omega_\text{n}t=X_1=x_0\\ \dot x(t=0)&=-\omega_\text{n}X_1\sin\omega_\text{n}t+\omega_\text{n}X_2\cos\omega_{n}t=\omega_\text{n}X_2=v_0\end{aligned} x(t=0)x˙(t=0)=X1cosωnt+X2sinωnt=X1=x0=ωnX1sinωnt+ωnX2cosωnt=ωnX2=v0 故而有 X 1 = x 0 X 2 = v 0 ω n (11) \begin{aligned}X_1&=x_0\\X_2&=\frac{v_0}{\omega_\text{n}}\end{aligned}\tag{11} X1X2=x0=ωnv0(11) 若以 X 1 X_1 X1 X 2 X_2 X2 为直角边作直角三角形,记斜边为 X X X X 1 X_1 X1 的对角为 φ 0 \varphi_0 φ0,则式 ( 5 ) (5) (5) 可以被表示为 x ( t ) = X 1 cos ⁡ ω n t + X 2 sin ⁡ ω n t = X sin ⁡ φ 0 cos ⁡ ω n t + X cos ⁡ φ 0 sin ⁡ ω n t = X sin ⁡ ( ω n t + φ 0 ) (12) \begin{aligned}x(t)&=X_1\cos\omega_\text{n}t+X_2\sin\omega_\text{n}t\\&=X\sin\varphi_0\cos\omega_\text{n}t+X\cos\varphi_0\sin\omega_\text{n}t\\&=X\sin\left(\omega_\text{n}t+\varphi_0\right)\tag{12}\end{aligned} x(t)=X1cosωnt+X2sinωnt=Xsinφ0cosωnt+Xcosφ0sinωnt=Xsin(ωnt+φ0)(12)

3-2-3 单自由度无阻尼系统振动解的三角函数化简

  • 振幅 (amplitude) X X X 振动的最大位移,根据式 ( 6 ) (6) (6) X = X 1 2 + X 2 2 = x 0 2 + ( v 0 ω n ) 2 (13) X=\sqrt{X_1^2+X_2^2}=\sqrt{x_0^2+\left(\frac{v_0}{\omega_\text{n}}\right)^2}\tag{13} X=X12+X22 =x02+(ωnv0)2 (13)
  • 自由振动频率 = 固有频率 ω n \omega_\text{n} ωn
  • 相位角 (phase angle) ω n t + φ 0 \omega_\text{n}t+\varphi_0 ωnt+φ0
  • 初相位 (initial phase angle) φ 0 \varphi_0 φ0 t = 0 t=0 t=0 时的相位角,同样根据式 ( 6 ) (6) (6) φ 0 = arctan ⁡ X 1 X 2 = arctan ⁡ ω n x 0 v 0 (14) \varphi_0=\arctan\frac{X_1}{X_2}=\arctan\frac{\omega_\text{n}x_0}{v_0}\tag{14} φ0=arctanX2X1=arctanv0ωnx0(14)

单自由度无阻尼系统自由振动的特性

  1. 自由振动是以谐波函数表示的 简谐振动 (simple harmonic motion) (简谐振动相关基础知识,见 绪论(三) 简谐振动及其三角函数、矢量、复数表示法)
  2. 自由振动的圆频率等于系统的固有频率
  3. 系统的固有频率和固有周期,仅由系统本身的参数所确定,与外界激励、初始条件、振幅、相位无关
  4. 系统的振幅和初相位角由初始条件确定
  5. 单自由度无阻尼系统的自由振动是等幅振动,系统一旦受到初始激励就会一直振动下去,且幅值始终保持不变

确定系统固有频率的方法

等效参数法

根据式 ( 7 ) (7) (7),用系统的 等效质量 m eq m_\text{eq} meq等效刚度 k eq k_\text{eq} keq 计算得出 ω n = k eq m eq (15) \omega_\text{n}=\sqrt{\frac{k_\text{eq}}{m_\text{eq}}}\tag{15} ωn=meqkeq (15) 适合系统比较简单,质量和弹簧刚度容易直接获得的情况


静变形法

在质量弹簧系统中,重力方向与弹簧方向一致时,静变形和自重、弹簧刚度之间存在关系 k δ st = m g k\delta_\text{st}=mg kδst=mg 因此有 ω n = k m = g δ st (16) \omega_\text{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{g}{\delta_\text{st}}}\tag{16} ωn=mk =δstg (16) 适合等效质量和等效刚度不易获取的单自由度振动系统,实际工程中应用较多


能量法

在介绍 确定振动微分方程的能量法 时,我们已经知道,无阻尼自由振动系统的机械能 (包括动能和势能) 守恒。 E = T + V = const E=T+V=\text{const} E=T+V=const机械能的总量不变,但系统的能量在动能和势能之间进行着周期性的转换。

  \, 位移 x x x速度 v v v势能 V V V动能 T T T
平衡位置处 0 0 0达到最大 v max v_\text{max} vmax 0 0 0 [注1]达到最大 T max = m v max 2 / 2 T_\text{max}=mv_\text{max}^2/2 Tmax=mvmax2/2 [注2]
最大位移处达到最大 x max x_\text{max} xmax 0 0 0达到最大 V max = k x max 2 / 2 V_\text{max}=kx_\text{max}^2/2 Vmax=kxmax2/2 [注2] 0 0 0

[注1] 严格来说,势能没有绝对值,只有相对值。为方便计算,我们人为定义平衡位置处势能为 0 0 0
[注2] 表格中的质量 m m m 指的是系统的等效质量,刚度 k k k 是系统的等效刚度

可见有 E = T + V = T max = V max (17) E=T+V=T_\text{max}=V_\text{max}\tag{17} E=T+V=Tmax=Vmax(17) 特别地,对于简谐振动有 x ( t ) = X sin ⁡ ( ω n t + φ 0 ) v ( t ) = x ˙ ( t ) = X ω n cos ⁡ ( ω n t + φ 0 ) \begin{aligned}x(t)&=X\sin(\omega_\text{n}t+\varphi_0)\\v(t)&=\dot x(t)=X\omega_\text{n}\cos(\omega_\text{n}t+\varphi_0)\end{aligned} x(t)v(t)=Xsin(ωnt+φ0)=x˙(t)=Xωncos(ωnt+φ0) 故有 x max = X v max = X ω n (18) \begin{aligned}x_\text{max}&=X\\v_\text{max}&=X\omega_\text{n}\end{aligned}\tag{18} xmaxvmax=X=Xωn(18) 通过将式 ( 18 ) (18) (18) 代入式 ( 17 ) (17) (17),然后振幅 X X X 往往可以消去,就可以直接得出系统的固有频率 ω n \omega_\text{n} ωn,而无需导出运动方程,非常适合一些比较复杂的系统,尤其是具有多个弹性元件或多个惯性元件的系统,以及平移振动和角振动并存的系统。

能量法确定系统固有频率的注意事项

  1. 必须确定系统的振动形式是简谐振动 (在没有非线性项的情况下,单自由度无阻尼系统的振动形式都是简谐振动)
  2. 计算最大势能时,需要 取平衡位置处为势能零点 进行计算,否则式 ( 17 ) (17) (17) 是不成立的。

能量法中势能的处理方法

对于各弹簧在平衡位置处均不变形的情况,直接按照胡克定律计算各弹簧势能并求和即可,平衡位置处天然为势能零点。那么,对于重力沿振动方向做功、或者多根弹簧互相牵制,导致弹簧在平衡位置处有初始变形量的情况,又要怎么处理呢?

比如下面这个例子,平衡位置处弹簧1、2的变形量分别为 δ 1 \delta_1 δ1 δ 2 \delta_2 δ2,重力方向与弹簧方向一致。则平衡位置处,存在静力平衡方程 k 1 δ 1 + k 2 δ 2 = m g k_1\delta_1+k_2\delta_2=mg k1δ1+k2δ2=mg 弹簧的弹性势能 V s ( x ) ∣ x = 0 = 1 2 k 1 δ 1 2 + 1 2 k 2 δ 2 2 V_\text{s}(x)|_{x=0}=\frac{1}{2}k_1\delta_1^2+\frac{1}{2}k_2\delta_2^2 Vs(x)x=0=21k1δ12+21k2δ22 要使此处为势能零点,有 V g ( x ) ∣ x = 0 = − 1 2 k 1 δ 1 2 − 1 2 k 2 δ 2 2 V_\text{g}(x)|_{x=0}=-\frac{1}{2}k_1\delta_1^2-\frac{1}{2}k_2\delta_2^2 Vg(x)x=0=21k1δ1221k2δ22 则任意位置重力势能为 V g ( x ) = − m g x − 1 2 k 1 δ 1 2 − 1 2 k 2 δ 2 2 V_\text{g}(x)=-mgx-\frac{1}{2}k_1\delta_1^2-\frac{1}{2}k_2\delta_2^2 Vg(x)=mgx21k1δ1221k2δ22 任意位置总势能 V ( x ) = V s ( x ) + V g ( x ) = 1 2 k 1 ( x + δ 1 ) 2 + 1 2 k 2 ( x + δ 2 ) 2 − m g x − 1 2 k 1 δ 1 2 − 1 2 k 2 δ 2 2 = 1 2 k 1 x 2 + 1 2 k 2 x 2 + ( k 1 δ 1 x + k 2 δ 2 x − m g x ) = 1 2 k 1 x 2 + 1 2 k 2 x 2 \begin{aligned}V(x)&=V_\text{s}(x)+V_\text{g}(x)\\&=\frac{1}{2}k_1\left(x+\delta_1\right)^2+\frac{1}{2}k_2\left(x+\delta_2\right)^2-mgx-\frac{1}{2}k_1\delta_1^2-\frac{1}{2}k_2\delta_2^2\\&=\frac{1}{2}k_1x^2+\frac{1}{2}k_2x^2+\left(k_1\delta_1x+k_2\delta_2x-mgx\right)\\&=\frac{1}{2}k_1x^2+\frac{1}{2}k_2x^2\end{aligned} V(x)=Vs(x)+Vg(x)=21k1(x+δ1)2+21k2(x+δ2)2mgx21k1δ1221k2δ22=21k1x2+21k2x2+(k1δ1x+k2δ2xmgx)=21k1x2+21k2x2
3-2-4 初始变形量对势能的影响
可见,对于弹簧在平衡位置处有初始变形量的情况,只需把计算弹性势能的原点挪动到静力平衡点,且不计算重力势能即可。 其计算结果与实际情况相同。

这种处理方法对于复杂的线性系统非常方便,我们无需关心每一根弹簧的初始长度,也无需关心弹性力、重力之间复杂的相互作用,只需要知道静力平衡点的状态即可。 在用能量法确定振动微分方程时,用这个方法处理势能,有时也能简化计算。

但需要注意的是,当弹簧方向、重力方向和振动方向之间的关系存在变化,实际上就引入了非线性项,这个方法就不再适用了(比如前面介绍 确定振动微分方程的能量法 时用于例子的弹簧摆杆系统)


举个栗子 固定滑轮起重系统 (具有多个惯性元件,且平移振动和角振动并存)
重物质量 m m m
滑轮半径为 R R R,质心位于铰接点 O O O 处,对 O O O 点的转动惯量为 J J J
钢索简化为弹簧,其刚度为 k k k
3-2-5 能量法确定系统固有频率
记从平衡位置的转动角度为 θ \theta θ,则动能 T = 1 2 m ( R θ ˙ ) 2 + 1 2 J θ ˙ 2 = 1 2 ( m R 2 + J ) θ ˙ 2 T=\frac{1}{2}m(R\dot\theta)^2+\frac{1}{2}J\dot\theta^2=\frac{1}{2}\left(mR^2+J\right)\dot\theta^2 T=21m(Rθ˙)2+21Jθ˙2=21(mR2+J)θ˙2 以平衡位置为零势能点的势能 V = 1 2 k ( R θ ) 2 V=\frac{1}{2}k(R\theta)^2 V=21k()2 我们观察到这个系统首先是个单自由度无阻尼系统,其次没有非线性项,所以可以设其振动方程为 θ ( t ) = Θ sin ⁡ ( ω n t + φ 0 ) \theta(t)=\Theta\sin\left(\omega_\text{n}t+\varphi_0\right) θ(t)=Θsin(ωnt+φ0) 则有 θ max = Θ , θ ˙ max = Θ ω n \theta_\text{max}=\Theta,\dot\theta_\text{max}=\Theta\omega_\text{n} θmax=Θ,θ˙max=Θωn 所以 1 2 ( m R 2 + J ) ( Θ ω n ) 2 = T max = V max = 1 2 k ( R Θ ) 2 \frac{1}{2}\left(mR^2+J\right)\left(\Theta\omega_\text{n}\right)^2=T_\text{max}=V_\text{max}=\frac{1}{2}k(R\Theta)^2 21(mR2+J)(Θωn)2=Tmax=Vmax=21k(RΘ)2 消去 Θ \Theta Θ 项有 ω n = k R 2 m R 2 + J \omega_\text{n}=\sqrt\frac{kR^2}{mR^2+J} ωn=mR2+JkR2


参考文献

[1] 同济大学数学系.高等数学.上册[M].北京:人民邮电出版社,2016:244~248.
[2] 鲍文博,白泉,陆海燕.振动力学基础与MATLAB应用[M].北京:清华大学出版社,2015:37~46.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
根据提供的引用内容,没有直接提到七自由度机械臂的惯性矩阵。引用\[1\]中提到了六轴六自由度机械臂的轨迹跟踪的matlab实现,引用\[2\]中提到了假设第一、个杆件的质量分别集中在各自的末端点,没有惯性矩阵。引用\[3\]中提到了拆解方式的动力学方程结构,但没有具体提到七自由度机械臂的惯性矩阵。 因此,根据提供的引用内容,无法直接回答七自由度机械臂的惯性矩阵。如果您需要了解七自由度机械臂的惯性矩阵,建议参考相关的机械臂动力学理论和文献。 #### 引用[.reference_title] - *1* [【机械臂】六轴六自由度机械臂轨迹跟踪的matlab实现(基于速度雅各比矩阵方法)](https://blog.csdn.net/fantasty9413/article/details/108022571)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [机器人学之动力学笔记【10】—— 双旋转自由度机械臂](https://blog.csdn.net/huangjunsheng123/article/details/110354287)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值