【4.3 分布形态的描述】(描述性统计分析)——CDA

目录

I. 标准化值/标准分数

         1.1 对称分布:

1.2. 切比雪夫不等式

II.偏态(skewness)

III.峰态(kurtosis)

IV.描述性统计图表

4.1 直方图

4.2 散点图

4.3 箱型图/盒须图/箱线图


I. 标准化值/标准分数

 度量的样本值到均值之间的差值是标准差的多少倍,这个倍数即标准化值。

 去量纲,

分子的作用:把原来的点平移到y轴,分母——让数据的分布情况产生伸缩。

最后一行即是 标准化值。

示例:-1.5 度量的:原始25这个数据距离均值34 的差值是标准差的 -1.5倍

1.1 对称分布:

 

1.2. 切比雪夫不等式

不是对称分布的数据,用这个方式: 

 

把之外的数据,称为离群值。

eg:3倍标准差外,数据称为异常值。(先把这组数据标准化,再找异常值)

II.偏态(skewness)

数据分布的偏斜程度。

 看分布图的尾巴在哪,在右则叫右偏分布。

 

 

III.峰态(kurtosis)

数据分布的扁平程度。

 

 

数据越扁平分布,峰态系数越小,小于0;

峰态系数 >0,越尖。

IV.描述性统计图表

4.1 直方图

显示各组之间,频数分布。

 

4.2 散点图

描述变量间的关系,以及数据的分布情况。

eg:随着x增长,y也在增长。

 

4.3 箱型图/盒须图/箱线图

 可以描述出离散程度。

也可以用 2倍标准差或3倍标准差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值