数学建模【GM(1, 1)灰色预测】

本文介绍了GM(1,1)灰色预测的基本概念,区分了白色、黑色和灰色系统的特性,并详细阐述了在数列预测、灾变预测和拓扑预测中的应用。文章还讲解了模型流程,包括数据预处理、参数求解和模型检验,以及注意事项,如数据量的选择和模型适用性判定。
摘要由CSDN通过智能技术生成

一、GM(1, 1)灰色预测简介

乍一看,这个名字好奇怪,其实是有含义的

  • G:Grey(灰色)
  • M:Model(模型)
  • (1, 1):只含有一个变量的一阶微分方程模型

提到灰色,就得先说说白色和黑色

白色系统

  • 典型例子:电阻器件
  • 特点:内部特征是完全已知的,电压、电流和电阻之间的关系(欧姆定律)是已知的
  • 知道电阻大小后,输入电压值,就能算出电流值
  • 白色系统课“计算”出想要的结果

黑色系统

  • 典型例子:一辆车
  • 特点:内部特征是完全未知的,开车并不需要懂发动机设计和工作原理等
  • 非专业人士虽然可以控制汽车,然而内部出故障时并不会修
  • 黑色系统具有“不可知性”

灰色系统

  • 典型例子:GDP就是灰色系统
  • 特点:介于黑色和白色之间,部分已知,部分未知,具有小样本数据的不确定系统
  • 我们有往年的数据和一定的理论基础(白色)
  • 但无法精确计算得出下一年的值(黑色)
  • 灰色无法“计算”,但并不是完全“不可知”,可以进行“预测”

二、适用赛题

数列预测

  • 特点:定时求量,已知xx年到xx年的数据,请预测下一年的数值
  • 常见GDP、人口数量、耕地面积、粮食产量等问题
  • 针对的问题往往短期波动小、可预测,但长期可能变化大、难以准确预测

灾变预测

  • 特点:定量求时,已知xx年到xx年的数据和某灾变的阈值,预测下一次灾变发生的时间
  • 常见洪涝灾害、虫灾等问题
  • 模型中需要把超出阈值的数据(异常数据)对应的时间组成新序列

拓扑预测

  • 特点:对数据波形进行预测,求的是多个模型构成的模型群,等于求解多个灾变预测
  • 与灾变预测类似,不过有较详细的分级,例如虫灾“轻微”“中度”“重度”

注意事项

  • 需要的数据量少,而且数据量太多了没意义,例如用近100年去预测下一年毫无意义
  • 只能短期预测,究竟多短没有严格限制

三、模型流程

四、流程分析

这里以一个例子贯穿流程分析

问题是预测下一年噪声数据

这个题目特点:数据少、看不出明显规律,适合用灰色预测

1.级比检验和平移变换

为了不让我们一顿操作猛如虎,一看预测不可靠,我们可以在开始之前对数据进行检验,确定原始数据GM(1, 1)模型的可行性。

这里

是原始数据的意思

如果在区间外,可尝试平移变换。也就是给每个数据都加上任意常数c后看是否在区间内,求解后再减去c。如果尝试多次平移变换后始终无法在区间内,说明题目不适合灰色预测。

2.累加数据

因为原始数据看不出什么规律,所以我们要进行操作制造规律,一般是累加数据

弱化其随机性,显现其规律性

3.构造方程

生成的新序列,看起来像一个指数曲线。因此可用一个指数曲线的表达式来逼近这个新序列,相应可构建一个一阶常微分方程来求解拟合指数曲线的函数表达式。

要预测下一年数值,就需要知道新序列的表达式,那就要解出微分方程。要解微分方程,就要先知道参数a和u

4.求参数

b表示灰作用量,-a表示发展系数。

5.求解方程和预测值

拟合值与预测值

  • 因为第1到7年的噪声数据是已知的,那么通过微分方程的函数解求出的值就是拟合值
  • 拟合值与实际值的偏差,代表了模型的优劣
  • 偏差越小,模型越好。偏差过大说明有问题,所以下一步需要拟合值进行模型检验
6.检验

至此,预测完成。

五、补充

此部分是后来发现一些关于GM(1, 1)灰色预测其他讨论的补充。

注:此部分可能与前面的流程图等不兼容,因不方便改动,还请谅解。

1.准指数规律

数据具有准指数规律是使用灰色系统建模的理论基础。

实际建模中,我们要计算出ρ(k) ∈ (0, 0.5)的占比,占比越高越好(一般前两期:ρ(2)和ρ(3)可能不符合要求,我们重点关注后面的期数)

2.发展系数与预测情形的探究

GM(1, 1)适用情况和发展系数的大小有很大关系,《灰色系统理论教程》中给了如下结论:

当|a| > 2时,模型没有意义;当|a| < 2时,GM(1, 1)才有意义。

当a取不同值时,预测的最终效果也不相同,具体讨论如下:

  • 当-a < 0.3时,GM(1, 1)模型适合于中期和长期数据的预测
  • 当0.3< -a ≤ 0.5时,GM(1, 1)模型适合于短期预测,中长期数据预测应谨慎使用
  • 当0.5 < -a ≤ 0.8时,GM(1, 1)模型对于预测短期数据应谨慎使用
  • 当0.8 < -a ≤ 1.0时,应对GM(1, 1)进行残差修正(见教材)后使用
  • 当-a > 1时,不宜使用GM(1, 1)模型进行预测

所以,我们可以根据预测出的a来和上述范围比较,来确定适用情况。

注意:上面这个结论谨慎使用,按照书上的结果,应该是发展系数越小预测的越精确。

3.GM(1, 1)模型的拓展

                                                                                                        ------源自《灰色系统理论教程》

4.什么时候用灰色预测

下面是参考清风up主的看法,使用哪种模型进行预测是仁者见仁智者见智的事情:

  • 数据是以年份度量的非负数据(如果是月份或者季度数据一定要用时间序列模型)
  • 数据能经过准指数规律的检验(除了前两期外,后面至少90%的期数的光滑比要低于0.5)
  • 数据的期数较短且和其他数据之间的关联性不强(小于等于10,也不能太短了,比如只有3期数据),要是数据期数较长,一般用传统的时间序列模型比较合适

六、关于预测题目

1.预测题目的一些小套路
  1. 看到数据后先画时间序列图并简单的分析下趋势(例如:时间序列分解)
  2. 将数据分为训练组和试验组,尝试使用不同的模型对训练组进行建模,并利用试验组的数据判断哪种模型的预测效果最好(比如我们可以使用SSE这个指标来挑选模型,常见的模型有指数平滑、ARIMA、灰色预测、神经网络等)
  3. 选择上一步骤中得到的预测误差最小的那个模型,并利用全部数据来重新建模,并对未来的数据进行预测
  4. 画出预测后的数据和原来数据的时序图,看看预测的未来趋势是否合理
2.对于预测模型的看法

真正的预测要结合背景,而不是直接套用模型。

预测两要

  • 要结合背景
  • 要合理假设

预测两不要

  • 不要硬套模型
  • 不要不做解释

                                                                                                                          ------参考看法:清风

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还有糕手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值