目录
专题一 R/Rstudio简介及入门【夯实基础,相关案例数据代码】
结构方程模型(Sructural Equation Modeling,SEM)是分析系统内变量间的相互关系的利器,可通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。在R语言结构方程程序包中,lavaan具有简洁的语法结构、成熟模型构建和调整过程和稳定可靠的结果等特点,使其不亚于收费商业软件,是最受欢迎的结构方程模型程序包之一。
本训练营将基于R语言lavaan程序包,通过理论讲解和实际操作相结合的方式,由浅入深地系统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程。我们筛选大量经典案例,这些案例来自Nature、Ecology、Ecological Applications、Journal of Ecology、Oikos及Ecography等主流期刊,具有很大的参考和借鉴价值。训练内容包括R语言入门、结构方程模型原理简介、lavaan包简介及应用案例、潜变量分析、复合变量分析、非线性/非正态/缺失数据、分类变量、分组数据、嵌套/分层/多水平数据、重复测量和时间数据、空间数据及非递归模型。
本教程适合R语言和结构方程模型的初学者,也适合对结构方程模型有高阶应用需求的研究生和科研人员,内容的设置是基于多年来与学员沟通和交流,使大家能够利用lavaan解决构建结构方程模型过程中的众多困扰。
专题一 R/Rstudio简介及入门【夯实基础,相关案例数据代码】
①R及Rstudio介绍:背景、软件及程序包安装、基本设置等
②R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等
③R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)
④R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储
专题二 结构方程模型(SEM)介绍
①SEM的定义、生态学领域应用及历史回顾
②SEM的基本结构
③SEM的估计方法
④SEM的路径规则
⑤SEM路径参数的含义
⑥SEM分析样本量及模型可识别规则
⑦SEM构建基本流程
专题三 lavaan包讲解及应用案例
①结构方程模型在生态学研究中的应用介绍及要点回顾
②lavaan简介、语法及结构方程模型分析入门
③lavaan结构方程模型构建应用案例
1.问题提出、元模型构建
2.模型构建及模型估计
3.模型调整:路径删减和增加原则
4.模型评估:最优模型筛选
5.结果表达
专题四 lavaan潜变量分析
①潜变量的定义、优势及应用背景分析
②潜变量分析lavaan实现基本原理
③案例1:单潜变量模型构建
④案例2:多个潜变量模型构建
专题五 lavaan复合变量(composite)分析
①复合变量的定义及在生态学领域应用情景分析
②复合变量分析lavaan实现途径
③案例1:单复合变量构建
④案例2:多复合变量构建
专题六 lavaan处理非线性/非正态/缺失数据
①非线性数据:外生变量及内生变量非线性关系
②变量间交互作用关系分析
③非正态数据vs非正态变量分析
④缺失数据处理方法
专题七 lavaan分类变量分析
①分类变量介绍
②外生变量为分类变量分析
③内生变量为分类变量分析
专题八 lavaan分组数据(multigroup)分析
①分组数据vs分类变量vs交互作用
②数据分组分析实现途径
③二分组及多分组模型分析及结果表达
④包含潜变量模型分组分析
专题九 lavaan嵌套/分层/多水平数据分析
①嵌套/多水平/分层数据概述
②嵌套/多水平/分层数据结构结方程模型实现途径:lavaan vs lavaan.survey
③均衡和不均衡结构嵌套/多水平/分层数据结构方程实例
④嵌套/多水平/分层数据潜变量模型
专题十 lavaan重复测量和时间数据分析
①时间重复测量数据特点简介
②时间/重复测量数据的交叉滞后模型(Autoregressive Cross-Lagged Model)
③时间/重复测量数据的生长曲线模型(Growth Curve Model)
专题十一 lavaan空间自相关数据分析
①数据空间自相关概述
②lavaan处理空间自相关数据基本原理
③lavaan处理空间自相关问题实例
专题十二 lavaan非递归模型分析
①递归模型与非递归模型区别
②lavaan非递归模型分析注意事项及实现途径
③lavaan非递归模型案例讲解
注:请提前自备电脑及安装所需软件
更多应用
生态环境数据分析新篇章:Meta分析、R语言、Matlab、贝叶斯、结构方程模型等的前沿实践_metawin软件-CSDN博客文章浏览阅读973次,点赞26次,收藏25次。R语言作为新兴的统计软件,以开源、自由、免费等特点风靡全球。生态环境领域研究内容广泛,数据常多样而复杂。利用R语言进行多元统计分析,从复杂的现象中发现规律、探索机制正是R的优势。_metawin软件https://blog.csdn.net/weixin_46747075/article/details/136389570?spm=1001.2014.3001.5501R语言贝叶斯网络模型、INLA下的贝叶斯回归、R语言现代贝叶斯统计学方法、R语言混合效应(多水平/层次/嵌套)模型_inla包介绍-CSDN博客文章浏览阅读1.5k次,点赞18次,收藏24次。贝叶斯网络不但能够统合已有的各种统计学方法,如混合回归模型,LASSO,自回归模型,隐马模型等等;而且在很大程度上能够弥补统计学模型不能够进行因果推断的缺憾。以开源的R语言为平台,通过理论和实践相结合的方法,系统介绍了贝叶斯网络结构学习,参数学习以及因果推断等全过程,对贝叶斯网络有较全面的了解,并能够用于科研和工作实践中。_inla包介绍
https://blog.csdn.net/WangYan2022/article/details/135145016?spm=1001.2014.3001.5502piecewiseSEM非正态分布变量分析、嵌套/分层/多水平数据分析、处理重复测量和时间数据、处理空间自相关数据、处理系统发育数据、复合变量分析、处理分类变量、非线性关系数据分析、数据分组分析等-CSDN博客文章浏览阅读156次。训练内容包括R语言入门、结构方程模型原理简介、piecewise包简介及应用案例、非正态分布变量分析、嵌套/分层/多水平数据分析、重复测量和时间数据分析、空间自相关数据分析、系统发育数据分析、复合变量分析、分类变量、非线性数据及数据分组分析。
https://blog.csdn.net/WangYan2022/article/details/134197855?spm=1001.2014.3001.5502点 击 关 注,获取海量教程和资源