pytorch nn.Linear()详解

pytorch nn.Linear 详解 及在 全连接层的实例

函数

class torch.nn.Linear(in_features, out_features, bias=True)

函数解释

对输入数据做线性变换:y=Ax+b

参数:

in_features - 每个输入样本的大小

out_features - 每个输出样本的大小

bias - 若设置为False,这层不会学习偏置。默认值:True

官方例子

代码

import torch
from torch.autograd import Variable
import torch.nn as nn

#输入样本大小为20 输出样本大小30
m = nn.Linear(20, 30) 

# 随机生成一个大小为 128x20 的矩阵
input = Variable(torch.randn(128, 20))

#进行线性变化
output = m(input)

print(output.size())
torch.Size([128, 30])

分析

output.size()=矩阵size(128,20)*矩阵size(20,30)=(128,30)

简化例子

为了探究线性变化内部的原理,我们将数据简化

代码

import torch
from torch.autograd import Variable
import torch.nn as nn

# 输入的矩阵为5x3的随机矩阵
input = Variable(torch.randn(5, 3))
#输入样本大小为3,输出样本大小为4
m = nn.Linear(3, 4)

output = m(input)

print(input)
print(m)
print(output)
tensor([[-1.4788,  0.9317,  0.2875],
        [ 0.0588, -0.0252, -0.6945],
        [ 1.3408,  0.0937, -1.3727],
        [ 1.3503,  0.5256,  0.2303],
        [-0.2420, -0.2153, -0.1697]])

Linear(in_features=3, out_features=4, bias=True)

tensor([[-0.7177, -0.5477, -0.6553,  0.3569],
        [ 0.4992,  0.3262,  0.6837, -0.7086],
        [ 1.2571,  1.2009,  1.3016, -1.1527],
        [ 0.9723,  0.7095,  0.2631, -0.2271],
        [ 0.3237, -0.0485,  0.4222, -0.5008]], grad_fn=<AddmmBackward>)

分析

输入的矩阵大小为 5x3,线性变化的矩阵为 3x4
最后线性变化后的矩阵大小为 5x4
中间计算过程是什么,网上没找到,以后找到答案了,再补充

nn.LinearPyTorch中的一个类,用于定义一个全连接层。它接受两个参数,输入特征数和输出特征数。通过调用该类的实例,可以创建一个全连接层模型。 引用\[1\]中的代码展示了如何使用nn.Linear创建一个全连接层模型。在这个例子中,输入特征数为1,输出特征数为2。模型的结构包括一个线性层和一个ReLU激活函数。 引用\[2\]中的代码展示了另一个例子,使用nn.Linear实现了一个全连接层。在这个例子中,输入特征数为5,输出特征数为3。 引用\[3\]中的代码演示了如何使用nn.Linear进行预测。在这个例子中,输入特征数为2,输出特征数为1。通过将输入样本传递给模型,可以得到一个输出结果。 总结来说,nn.LinearPyTorch中用于定义全连接层的类,可以根据需要设置输入特征数和输出特征数,然后使用该类创建一个全连接层模型。 #### 引用[.reference_title] - *1* *2* [Pytorch入门之一文看懂nn.Linear](https://blog.csdn.net/MR_kdcon/article/details/108918272)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Pytorch nn.Linear的基本用法与原理详解](https://blog.csdn.net/zhaohongfei_358/article/details/122797190)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值