Are aligned neural networks adversarially aligned?
https://proceedings.neurips.cc/paper_files/paper/2023/hash/c1f0b856a35986348ab3414177266f75-Abstract-Conference.html
对齐的神经网络是否对抗性对齐?
文章目录
摘要
大型语言模型现在被调整以符合其创造者的目标,即“有帮助且无害”。这些模型应该对用户问题做出有帮助的回应,但拒绝回答可能导致伤害的请求。然而,对抗性用户可以构建输入,绕过对齐尝试。在这项工作中,我们研究了对抗性对齐,并询问这些模型在与构建最坏情况输入(对抗性示例)的对抗性用户交互时,在多大程度上保持对齐。这些输入旨在使模型发出原本被禁止的有害内容。
我们展示了现有的基于NLP的优化攻击不足以可靠地攻击对齐的文本模型:即使当前基于NLP的攻击失败,我们也可以暴力找到对抗性输入。因此,当前攻击的失败不应被视为证明对齐的文本模型在对抗性输入下仍然保持对齐的证据。然