论文阅读:2024 NeurIPS Group Robust Preference Optimization in Reward-free RLHF

Group Robust Preference Optimization in Reward-free RLHF

https://www.doubao.com/chat/3870738843518978

https://arxiv.org/pdf/2405.20304

速览

  • 研究动机 传统RLHF忽视群体偏好差异,导致模型对少数群体表现不佳,需提升群体鲁棒性。
  • 研究问题 如何使大语言模型在多样化群体偏好中实现稳健对齐,避免“一刀切”带来的不公平?
  • 研究方法 提出GRPO框架,结合群体信息与无奖励优化,通过自适应加权优先优化最差群体损失,理论分析收敛性并设计交替更新算法。
  • 研究结论 GRPO显著提升最差群体性能,减少群体间损失失衡,在合成和真实数据中优于非鲁棒基线,增强模型公平性。
  • 不足 在数据平衡场景优势有限,最坏情况优化可能降低平均性能,需进一步权衡参数调节。

这篇论文主

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值