条件期望例题:帽子匹配问题

条件期望例题:帽子匹配问题

假设n个人丢n个帽子, 丢完后各自随机拿一顶, 拿到自己帽子的退出游戏, 没拿到的继续丢, 再继续拿. 如此往复, 直到所有人均拿到了自己的帽子, 游戏结束.
a. 设游戏开始时一共有n个人, 记 R n R_n Rn为游戏进行的总回合数. 求 E [ R n ] E[R_n] E[Rn]
解:
E [ R n ] = n E[R_n]=n E[Rn]=n是一个很合理的假设, 因为无论在每一轮游戏有多少参与者, 平均只有一个人能拿到自己的帽子(容易证明), 而且易知 E [ R 1 ] = 1 E[R_1]=1 E[R1]=1, 故采用归纳法.
X n X_n Xn为游戏的第一回合中, 拿到自己帽子退出游戏的人数, 且设在 k = 1 , . . . , n − 1 k=1,...,n-1 k=1,...,n1时, E [ R k ] = k E[R_k]=k E[Rk]=k, 根据条件期望公式,则有
E [ R n ] = E [ E [ R n ∣ X n ] ] = ∑ i = 0 n E [ R n ∣ X n = i ] ⋅ P { X n = i } = ∑ i = 0 n ( 1 + E [ R n − i ] ) ⋅ P { X n = i } = 1 + E [ R n ] ⋅ P { X n = 0 } + ∑ i = 1 n E [ R n − i ] ⋅ P { X n = i } ↓ 因为 i = { 1 , . . . , n } , 所以 0 ≤ n − i < n , 根据归纳法       E [ R n − i ] = n − i = 1 + E [ R n ] ⋅ P { X n = 0 } + ∑ i = 1 n ( n − i ) ⋅ P { X n = i } = 1 + E [ R n ] ⋅ P { X n = 0 } + n ( 1 − P { X n = 0 } ) − E [ X n ] = E [ R n ] ⋅ P { X n = 0 } + n ( 1 − P { X n = 0 } ) \begin{split} E[R_n] &= E[E[R_n|X_n]] \\ &=\sum_{i=0}^n E[R_n|X_n = i]\cdot P\{X_n = i\} \\ &= \sum_{i=0}^n (1+E[R_{n-i}])\cdot P\{X_n = i\} \\ &= 1 +E[R_n] \cdot P\{X_n = 0\} +\sum_{i=1}^n E[R_{n-i}]\cdot P\{X_n = i\} \\ &\downarrow 因为i=\{1,...,n\}, 所以0\leq n-i<n, 根据归纳法 \\ & \ \ \ \ \ E[R_{n-i}]=n-i \\ &=1 +E[R_n] \cdot P\{X_n = 0\} +\sum_{i=1}^n (n-i)\cdot P\{X_n = i\} \\ &=1 +E[R_n] \cdot P\{X_n = 0\} +n(1- P\{X_n = 0\}) -E[X_n] \\ &=E[R_n] \cdot P\{X_n = 0\} +n(1- P\{X_n = 0\}) \end{split} E[Rn]=E[E[RnXn]]=i=0nE[RnXn=i]P{Xn=i}=i=0n(1+E[Rni])P{Xn=i}=1+E[Rn]P{Xn=0}+i=1nE[Rni]P{Xn=i}因为i={1,...,n},所以0ni<n,根据归纳法     E[Rni]=ni=1+E[Rn]P{Xn=0}+i=1n(ni)P{Xn=i}=1+E[Rn]P{Xn=0}+n(1P{Xn=0})E[Xn]=E[Rn]P{Xn=0}+n(1P{Xn=0})
也就是
E [ R n ] = E [ R n ] ⋅ P { X n = 0 } + n ( 1 − P { X n = 0 } ) E[R_n]=E[R_n] \cdot P\{X_n = 0\} +n(1- P\{X_n = 0\}) E[Rn]=E[Rn]P{Xn=0}+n(1P{Xn=0})
移项可知
E [ R n ] = n E[R_n]=n E[Rn]=n

b. 设游戏开始时一共有 n ( n ≥ 2 ) n(n\geq 2) n(n2)个人, 记 S n S_n Sn为各个参与者选取帽子的次数之和. 求 E [ S n ] E[S_n] E[Sn]
解:
根据条件期望公式
E [ S n ] = E [ E [ S n ∣ X n ] ] = ∑ i = 0 n E [ S n ∣ X n = i ] ⋅ P { X n = i } = ∑ i = 0 n ( n + E [ S n − i ] ) ⋅ P { X n = i } = n + ∑ i = 0 n E [ S n − i ] ⋅ P { X n = i } \begin{split} E[S_n] &= E[E[S_n|X_n]] \\ &=\sum_{i=0}^n E[S_n|X_n = i]\cdot P\{X_n = i\} \\ &= \sum_{i=0}^n (n+E[S_{n-i}])\cdot P\{X_n = i\} \\ &=n+\sum_{i=0}^nE[S_{n-i}]\cdot P\{X_n = i\} \end{split} E[Sn]=E[E[SnXn]]=i=0nE[SnXn=i]P{Xn=i}=i=0n(n+E[Sni])P{Xn=i}=n+i=0nE[Sni]P{Xn=i}

而且易知 E [ S 0 ] = 0 , E [ S 1 ] = 0 E[S_{0}]=0, E[S_{1}]=0 E[S0]=0,E[S1]=0 (一个人的时候不选).
将该方程重写做
E [ S n ] = n + E [ S n − X n ] E[S_n]=n+E[S_{n-X_n}] E[Sn]=n+E[SnXn]

我们这样想, 从第一个回合到最后一个回合, 每个回合中, 都有且只有一个参与者拿到帽子退出游戏, 则从结束往开始推, 最后一个退出的参加了 n n n轮选择, 倒数第二个参加了 n − 1 n-1 n1轮, 所有人的参与次数相加则为 1 + 2 + ⋯ + n = n ( n + 1 ) 2 1+2+\cdots+n = \frac{n(n+1)}{2} 1+2++n=2n(n+1)次. 这应该就是答案, 或者和最后的答案有着相似的形式.
不妨设 E [ S n ] = a n + b n 2 E[S_n] = an+bn^2 E[Sn]=an+bn2, 带入上式, 易知 E [ S n ] = n + 1 2 n 2 E[S_n] = n+\frac{1}{2}n^2 E[Sn]=n+21n2. 这就是答案了. 为了验证答案的正确性, 用归纳法.
当n=2时, 易知
E [ S 2 ] = 2 + ∑ i = 0 2 E [ S 2 − i ] ⋅ P { X 2 = i } = 2 + E [ S 2 ] ⋅ P { X 2 = 0 } = E [ S 2 ] ⋅ 0.5 + 2 \begin{split} E[S_2]&=2+\sum_{i=0}^2 E[S_{2-i}]\cdot P\{X_2 = i\} \\ &=2+E[S_{2}]\cdot P\{X_2 = 0\} \\ &=E[S_{2}]\cdot 0.5+2 \end{split} E[S2]=2+i=02E[S2i]P{X2=i}=2+E[S2]P{X2=0}=E[S2]0.5+2

E [ S 2 ] = 4 = 2 + 2 2 2 E[S_2] = 4 = 2+\frac{2^2}{2} E[S2]=4=2+222
设在 k = 1 , . . . , n − 1 k=1,...,n-1 k=1,...,n1时, E [ S k ] = k + 1 2 k 2 E[S_k]=k+\frac{1}{2}k^2 E[Sk]=k+21k2, 且 P { X n = n − 1 } = 0 P\{X_n = n-1\} = 0 P{Xn=n1}=0 (不存在只有你没选对的情况), 则
E [ S n ] = n + ∑ i = 0 n E [ S n − i ] ⋅ P { X n = i } = n + E [ S n ] P { X n = 0 } + ∑ i = 1 n E [ S n − i ] ⋅ P { X n = i } = n + E [ S n ] P { X n = 0 } + ∑ i = 1 n [ ( n − i ) + 1 2 ( n − i ) 2 ] ⋅ P { X n = i } = n + E [ S n ] P { X n = 0 } + ( n + n 2 2 ) ( 1 − P { X n = 0 } ) − ( n + 1 ) E [ X n ] + E [ X n 2 ] 2 \begin{split} E[S_n]&=n+\sum_{i=0}^nE[S_{n-i}]\cdot P\{X_n = i\} \\ &=n+E[S_n]P\{X_n = 0\}+\sum_{i=1}^nE[S_{n-i}]\cdot P\{X_n = i\} \\ &=n+E[S_n]P\{X_n = 0\}+\sum_{i=1}^n[(n-i)+\frac{1}{2}(n-i)^2]\cdot P\{X_n = i\} \\ &=n+E[S_n]P\{X_n = 0\} \\ &+(n+\frac{n^2}{2})(1-P\{X_n = 0\}) - (n+1)E[X_n] + \frac{E[X_n^2]}{2} \end{split} E[Sn]=n+i=0nE[Sni]P{Xn=i}=n+E[Sn]P{Xn=0}+i=1nE[Sni]P{Xn=i}=n+E[Sn]P{Xn=0}+i=1n[(ni)+21(ni)2]P{Xn=i}=n+E[Sn]P{Xn=0}+(n+2n2)(1P{Xn=0})(n+1)E[Xn]+2E[Xn2]

因为 E [ X n ] = 1 , E [ X n 2 ] = 2 E[X_n] = 1, E[X_n^2] = 2 E[Xn]=1,E[Xn2]=2
所以
E [ S n ] = n + n 2 2 证明完毕 E[S_n] = n+\frac{n^2}{2} \\ 证明完毕 E[Sn]=n+2n2证明完毕

c. 每个人都可能选错帽子, 每个人选错帽子的次数也是一个随机变量. 求该随机变量之期望
解:
C j C_j Cj为第 j j j个玩家选帽子选的次数(当然这里假定一个人的时候玩不了游戏, 同样不选), 则 C j − 1 C_j - 1 Cj1为第j个人选错的次数. 易知
∑ j = 1 n C j = S n \sum_{j=1}^n C_j = S_n j=1nCj=Sn
易知
E [ C j ] = E [ S n ] n = 1 + n 2 , n ≥ 2 E[C_j] = \frac{E[S_n]}{n}= 1+\frac{n}{2} , n\geq 2 E[Cj]=nE[Sn]=1+2n,n2

所以每个人平均选错的次数为
E [ C j − 1 ] = n 2 E[C_j - 1] = \frac{n}{2} E[Cj1]=2n

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值