条件期望3

条件期望例题—连续发生的事情

连续地做二项实验, 每一次成功概率为p.
当连续k次成功时, 停止实验.
求停止实验时做的总实验次数的期望.

解:
错误解法
N k N_k Nk为停止实验时做的总实验次数, 则
E [ N k ] = E [ E [ N k ∣ N k − 1 ] ] = ∑ j = k − 1 ∞ E [ N k ∣ N k − 1 = j ] \begin{split} E[N_k] &= E[E[N_k|N_{k-1}]] \\ &=\sum_{j= k-1}^{\infin}E[N_k|N_{k-1}=j] \end{split} E[Nk]=E[E[NkNk1]]=j=k1E[NkNk1=j]
因为
E [ N k ∣ N k − 1 ] = p ⋅ ( N K − 1 + 1 ) + ( 1 − p ) ⋅ E [ N k ] E[N_k|N_{k-1}] = p\cdot(N_{K-1} +1) + (1-p)\cdot E[N_k] E[NkNk1]=p(NK1+1)+(1p)E[Nk]
(一旦错了又得重开)
对两边去取期望
E [ E [ N k ∣ N k − 1 ] ] = E [ N k ] = p ⋅ ( E [ N k − 1 ] + 1 ) + ( 1 − p ) ⋅ E [ N k ] E[E[N_k|N_{k-1}]] = E[N_k] = p \cdot (E[N_{k-1}] + 1) + (1-p) \cdot E[N_k] E[E[NkNk1]]=E[Nk]=p(E[Nk1]+1)+(1p)E[Nk]

E [ N k ] = E [ N k − 1 ] + 1 E[N_k] = E[N_{k-1}] + 1 E[Nk]=E[Nk1]+1
因为 E [ N 1 ] = 1 p E[N_1] = \frac{1}{p} E[N1]=p1, 所以

E [ N 2 ] = 1 p + 1 ↓ E [ N n ] = 1 p + ( n − 1 ) \begin{split} E[N_2] &= \frac{1}{p} + 1 \\ &\downarrow \\ E[N_n] &= \frac{1}{p} + (n-1) \end{split} E[N2]E[Nn]=p1+1=p1+(n1)
易知上述解法的答案在直觉上是不成立的, 因为随着k的增大, E [ N k ] E[N_k] E[Nk]的增长速度应该以非常快的速度增大, 而非仅仅是线性增长, 所以显然是错误的.

正确解法
E [ N k ] = E [ E [ N k ∣ N k − 1 ] ] E[N_k] = E[E[N_k|N_{k-1}]] E[Nk]=E[E[NkNk1]]
显然, 最要紧的是找出 E [ N k ∣ N k − 1 ] E[N_k|N_{k-1}] E[NkNk1]作为 N k − 1 N_{k-1} Nk1的函数, 这个函数关系是什么
(一旦错了又得重开), 这个思路对的, 但(1)式是错的
E [ N k ∣ N k − 1 ] = p ⋅ ( N K − 1 + 1 ) + ( 1 − p ) ⋅ E [ N k ] (1) E[N_k|N_{k-1}] = p\cdot(N_{K-1} +1) + (1-p)\cdot E[N_k] \tag{1} E[NkNk1]=p(NK1+1)+(1p)E[Nk](1)

应该是这样的思路
现在已经做了 N k − 1 次试验 ↙ ↘ 成功 ( 概率 p )              失败 ( 概率 1 − p ) N k = N k − 1 + 1              N k = N k − 1 + 1 + N k \begin{split} 现在已经做了&N_{k-1}次试验 \\ \swarrow&\searrow \\ 成功(概率p)\ \ \ \ \ \ &\ \ \ \ \ \ 失败(概率1-p) \\ N_k = N_{k-1} + 1\ \ \ \ \ &\ \ \ \ \ \ N_k = N_{k-1} + 1 + N_k \end{split} 现在已经做了成功(概率p)      Nk=Nk1+1     Nk1次试验      失败(概率1p)      Nk=Nk1+1+Nk
所以 ( 2 ) (2) (2)式才是正确的
E [ N k ∣ N k − 1 ] = p ⋅ ( N K − 1 + 1 ) + ( 1 − p ) ⋅ ( N K − 1 + 1 + E [ N k ] ) = N K − 1 + ( 1 − p ) ⋅ E [ N k ] (2) \begin{split} E[N_k|N_{k-1}] &= p\cdot(N_{K-1} +1) + (1-p)\cdot (N_{K-1} +1+E[N_k]) \\ &=N_{K-1} +(1-p)\cdot E[N_k] \tag{2} \end{split} E[NkNk1]=p(NK1+1)+(1p)(NK1+1+E[Nk])=NK1+(1p)E[Nk](2)

其他的推导过程同上, 最终也是一个递归方程
E [ N k ] = E [ N k − 1 ] p + 1 p E[N_k] = \frac{E[N_{k-1}]}{p} + \frac{1}{p} E[Nk]=pE[Nk1]+p1
最终的结果是
E [ N k ] = 1 p + 1 p 2 + ⋯ + 1 p k E[N_k] = \frac{1}{p}+ \frac{1}{p^2} + \cdots + \frac{1}{p^k} E[Nk]=p1+p21++pk1
显然这一结果才是正确的结果, 直观上也更加准确.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值