线性代数(5)- 线性映射第三讲

线性代数(5)- 线性映射第三讲

向量空间的积

  对于向量空间 V 1 . … , V m V_1.\dots,V_m V1.,Vm,它们的积(Product)定义为 V 1 × ⋯ × V m = { ( v 1 , … , v m ) ∣ v 1 ∈ V 1 , … , v m ∈ V m } V_1\times \dots \times V_m=\lbrace (v_1,\dots,v_m) \mid v_1\in V_1,\dots,v_m \in V_m \rbrace V1××Vm={(v1,,vm)v1V1,,vmVm}

  这一个集合表征的空间内,继续定义加法和数乘

  加法定义为 ( u 1 , … , u m ) + ( v 1 , … , v m ) = ( u 1 + v 1 , … , u m + v m ) (u_1,\dots,u_m)+(v_1,\dots,v_m)=(u_1+v_1,\dots,u_m+v_m) (u1,,um)+(v1,,vm)=(u1+v1,,um+vm),数乘则定义为 λ ( v 1 , … , v m ) = ( λ v 1 , … , λ v m ) \lambda(v_1,\dots,v_m)=(\lambda v_1,\dots,\lambda v_m) λ(v1,,vm)=(λv1,,λvm)

  可推出,向量空间的积是向量空间

  如果参与积运算的向量空间是有限维度的,则积也是有限维度的,则有 d i m ( V 1 × ⋯ × V m ) = d i m   V 1 + ⋯ + d i m   V m dim(V_1 \times \dots \times V_m) = dim\ V_1+\dots+dim\ V_m dim(V1××Vm)=dim V1++dim Vm

  如果 U 1 , … , U m U_1,\dots,U_m U1,,Um V V V的子空间,构造一个映射 Γ : U 1 × ⋯ × U m → U 1 + ⋯ + U m , Γ ( u 1 , … , u m ) = u 1 + ⋯ + u m \Gamma:U_1\times\dots \times U_m \rightarrow U_1+\dots+U_m,\Gamma(u_1,\dots,u_m)=u_1+\dots+u_m Γ:U1××UmU1++Um,Γ(u1,,um)=u1++um

  可推出这个映射是线性映射,此外, U 1 + ⋯ + U m U_1+\dots+U_m U1++Um是直和    ⟺    Γ \iff \Gamma Γ是一一映射的

  如果 V V V是有限维度的,则 U 1 + ⋯ + U m U_1+\dots+U_m U1++Um是直和,当且仅当 d i m ( U 1 + ⋯ + U m ) = d i m   U 1 + ⋯ + d i m   U m dim(U_1+\dots+U_m)=dim\ U_1+\dots+dim\ U_m dim(U1++Um)=dim U1++dim Um

向量空间的商

  如果 v ∈ V v\in V vV U U U V V V的子空间,则一个仿射子集(Affine Subset)定义为 V V V的子集,记为 v + U v+U v+U,有 v + U = { v + u ∣ u ∈ U } v+U=\lbrace v+u \mid u\in U \rbrace v+U={v+uuU},其中

  仿射子集 v + U v+U v+U被称为与 U U U平行(Parallel)

   U U U V V V的子集,则它们的商定义为由所有与 U U U平行的、 V V V的仿射子集组成的集合,记为 V / U V/U V/U,有 V / U = { v + U ∣ v ∈ V } V/U=\lbrace v+U \mid v\in V \rbrace V/U={v+UvV}

  可推出,如果 v , w ∈ V v,w\in V v,wV,以下三个命题等价

  • v − w ∈ U v-w \in U vwU
  • v + U = w + U v+U=w+U v+U=w+U
  • ( v + U ) ∩ ( w + U ) ≠ ∅ (v+U)\cap(w+U) \neq \varnothing (v+U)(w+U)=

  向量空间的商表征的空间内,继续定义加法和数乘

  加法定义为 ( v + U ) + ( w + U ) = ( v + w ) + U (v+U)+(w+U)=(v+w)+U (v+U)+(w+U)=(v+w)+U,数乘则定义为 λ ( v + U ) = ( λ v ) + U \lambda(v+U)=(\lambda v)+U λ(v+U)=(λv)+U

  可推出,向量空间的商是向量空间

  如果 U U U V V V的子空间,商映射定义为 π : V → V / U , π ( v ) = v + U \pi:V\rightarrow V/U,\pi(v)=v+U π:VV/U,π(v)=v+U,可推出这是一个线性映射

  可推出,如果 V V V是有限维度的, d i m   V / U = d i m   V − d i m   U dim\ V/U=dim\ V-dim\ U dim V/U=dim Vdim U

  对于 T ∈ L ( V , W ) T\in L(V,W) TL(V,W),定义 T ~ : V / ( n u l l   T ) → W , T ~ ( v + n u l l   T ) = T v \tilde{T}:V/(null\ T)\rightarrow W,\tilde T(v+null\ T)=Tv T~:V/(null T)W,T~(v+null T)=Tv

  可推出以下结论

  • T ~ \tilde T T~是线性映射且一一映射
  • r a n g e   T ~ = r a n g e   T range\ \tilde T=range\ T range T~=range T
  • V / ( n u l l   T ) V/(null\ T) V/(null T) r a n g e   T range\ T range T同构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值