线性代数(1)- 向量空间

线性代数(1)- 向量空间(Vector Space)

复数(Complex Number)

  向量空间(Vector Space)首先是一个空间,数学形式上就是一个集合(Set)。很自然的,首先需要定义元素(Element)的概念,实数是一类元素,类似地,复数也是一类元素。
  引入复数是为了体现向量空间的概念是普遍的,从它的元素可取的值就能看出,事实上,函数也是一类元素,后面将看到,只要定义了合理的加法和数乘运算,什么样的元素都可以组成一个向量空间。
  复数可以视为两个实数的对,a+bi,在运算上直接继承于实数的加法(Addtion)和乘法(Multiplication),也由此可以导出复数的性质

  • 交换律(Commutativity)
  • 结合律(Associativity)
  • 分配律(Distributive Property)
  • 实数0是加法单位(Additive identity)
  • 实数1是乘法单位(Multiplicative identity)
  • 加法逆(Additive inverse)唯一,加和得到加法单位
  • 乘法逆(Multiplicative Inverse)唯一,乘积得到乘法单位

  减法、除法被定义为是加相应的加法逆、乘相应的乘法逆

列表(List)

  类比于集合概念,列表是有序的、可重复的,有长度的。
  a list of length n 也被称为 n-tuple

常用的向量空间 Rn 和 Cn

   F = R ∣ C F = \Reals \mid \Complex F=RC
   F n = { ( x 1 , … , x n ) ∣ x j ∈ F , j = 1 , … , n } F^n = \lbrace(x_1,\ldots ,x_n) \mid x_j \in F, j=1,\ldots , n \rbrace Fn={(x1,,xn)xjF,j=1,,n}
   x j x_j xj 被称为坐标(j-th coordinate)

  在这两个空间中,定义元素的加法和数乘运算
  进而导出加法单位,并用 0 0 0 来表示
  Let 0 0 0 denote the list of length n whose coordinates are all 0
   0 = { ( 0 , … , 0 ) } 0 = \lbrace (0, \ldots , 0)\rbrace 0={(0,,0)}
  应注意到 0 0 0 的含义得到了扩充,除了表示实数零外,还表示全零的列表,且不同长度的列表有不同的 0 0 0
  加法逆通过加法单位导出
  应注意到复数时的运算定义和此时的定义不是一回事,前者是复数的运算,后者是是实数空间或者复数空间的元素(Element 此时是 List)的运算

作用在集合上的加法和数乘

  An addition on a set V V V is a function that assigns an element u + v ∈ V u+v\in V u+vV to each pair of elements u , v ∈ V u,v\in V u,vV
  A scalar multiplication on a set V V V is a funciton that assigns an element λ v ∈ V \lambda v \in V λvV to each λ ∈ F \lambda \in F λF and each v ∈ V v \in V vV
  应注意到,数乘定义是需要指定一个数域(Field)的,即 F = R ∣ C F = \Reals \mid \Complex F=RC
  同时,加法、乘法的定义已经包含了运算封闭的意味
  再次,运算封闭并不代表 a ∉ V , b ∉ V , a + b ∉ V a\notin V,b \notin V,a+b \notin V a/V,b/V,a+b/V

向量空间

  • 一个向量空间是一个集合,并定义了集合上的加法和数乘运算
  • 其中加法运算应满足交换律、结合律
  • 存在一个加法单位 0 ∈ V 0 \in V 0V,使得 ∀ v ∈ V , v + 0 = v \forall v \in V,v+0=v vV,v+0=v
  • 每个元素都至少存在一个对应的加法逆 w , v + w = v w, v+w=v w,v+w=v
  • 1是数乘单位
  • 加法和数乘满足分配律

  向量空间的元素又称为点(Point)、向量(Vector)
  应注意到 0 0 0的意义再次被扩充,除实数零、实数空间或复数空间的全零List,还有广义概念下向量空间的加法单位(零向量)
  由于数乘运算的需要指定一个数域,表达一个向量空间时,要说明是什么数域下的向量空间,通常就是实数域或复数域,因此可以省略说明。

  基于定义,导出以下性质

  • 加法单位唯一和加法逆唯一(Unique)
  • ∀ v ∈ V , 0 v = 0 \forall v \in V, 0v = 0 vV,0v=0(左零是数域的实数零,右零是零向量)
  • ∀ a ∈ F , a 0 = 0 \forall a \in F, a0=0 aF,a0=0 ( F F F是向量空间对应的数域)
  • ∀ v ∈ V , ( − 1 ) v = − v \forall v \in V,(-1)v=-v vV,(1)v=v,其中,记 v v v的加法逆为 − v -v v

  其它推论

  • 在向量空间的定义中,加法逆存在,可以被等效替换为性质二

函数集合

   F S F^{S} FS 是一个集合,由从集合S映射到集合F的所有函数组成
  定义函数集合上的加法和乘法(Product)运算

  For f , g ∈ F S f,g \in F^S f,gFS, the sum f + g ∈ F S f+g \in F^S f+gFS is the function defined by
∀ x ∈ S , ( f + g ) ( x ) = f ( x ) + g ( x ) \forall x \in S, (f+g)(x) = f(x)+g(x) xS,(f+g)(x)=f(x)+g(x)
  For f , g ∈ F S f,g \in F^S f,gFS, the product λ f ∈ F S \lambda f \in F^S λfFS is the function defined by
∀ x ∈ S , ( λ f ) ( x ) = λ f ( x ) \forall x \in S, (\lambda f)(x) = \lambda f(x) xS,(λf)(x)=λf(x)
  可以推出, F S F^{S} FS是向量空间,因此一些关于向量空间的理论亦可以作用到函数集合中,比如未来要提及的线性映射,直接的实际例子是常微分方程的求解
  值得注意的是, F S F^{S} FS向量空间的零向量0,也就是加法单位,是一个函数,这个函数无论自变量取值多少,其应变量都是0
∀ x ∈ S , 0 ( x ) = 0 \forall x \in S, 0(x) = 0 xS,0(x)=0

子空间

  向量空间 V V V的某个子集 U U U,如果 U U U也是一个向量空间(使用与 V V V相同的集合上的加法运算和数乘运算),则称为子空间(Subspace)

  子集 U U U V V V的子空间的充要条件如下

  • V V V的加法单位 0 ∈ U 0 \in U 0U
  • 加法、数乘运算在 U U U上封闭(Closed)

  一些其他推论

  • 子空间的交集还是子空间,并集通常不是子空间

子集的运算(和、直和)

  V的子集之间的运算,除常见的求交(Intersection)、求并(Union)、求差(Difference),还有和(Sum)、直和(Direct Sum)
   U 1 + ⋯ + U m = { u 1 + ⋯ + u m ∣ u 1 ∈ U 1 , … , u m ∈ U m } U_1+\dots+U_m = \lbrace u_1+\dots+u_m \mid u_1 \in U_1, \dots,u_m \in U_m \rbrace U1++Um={u1++umu1U1,,umUm}

  子空间的和有这些推论

  • Suppose U 1 , … , U m U_1,\dots,U_m U1,,Um are subspaces of V V V. Then U 1 + ⋯ + U m U_1+\dots+U_m U1++Um is the smallest subspace of V containing U 1 , … , U m U_1,\dots,U_m U1,,Um.
  • 子空间的和满足交换律和结合律
  • 子空间的和存在加法单位
  • 只有 { 0 } \lbrace 0 \rbrace {0}这个子空间有加法逆

  如果子空间的和的运算过程中,每一个向量都只有唯一表达则被称为直和,记为 U 1 ⊕ ⋯ ⊕ U m U_1 \oplus \dots \oplus U_m U1Um
  直和有以下推论

  子空间的和是直和的充要条件是 零向量有唯一表达

  两个子空间 U , W U, W U,W的和是直和的充要条件是 U ⋂ W = { 0 } U \bigcap W = \lbrace0\rbrace UW={0}
  三个以上将不适用,即使两两交集都满足

向量空间的几个点(可忽略)

  • 周期函数集合不是向量空间(不满足加法封闭)
  • U e U_e Ue 表示 R \reals R上的偶函数(Even)
    U o U_o Uo 表示 R \reals R上的奇函数(Odd)
    R R = U e ⊕ U o {\reals}^{\reals} = U_e \oplus U_o RR=UeUo
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值