线性代数(3)- 线性映射第一讲

线性代数(3)- 线性映射第一讲

线性映射

  一个满足以下性质的函数 T : V → W T:V \rightarrow W T:VW被称为一个线性映射(Linear Map)或线性变换(Linear Transform)

  • Additivity: ∀ u , v ∈ V , T ( u + v ) = T u + T v \forall u,v \in V,T(u+v)=Tu+Tv u,vV,T(u+v)=Tu+Tv
  • Homogeneity: ∀ λ ∈ F , ∀ u ∈ V , T ( λ u ) = λ ( T u ) \forall \lambda \in F, \forall u \in V,T(\lambda u)=\lambda (Tu) λF,uV,T(λu)=λ(Tu)
  • (函数后面只有一个符号的自变量时,省略括号)

  所有线性映射 T : V → W T:V \rightarrow W T:VW组成的集合记为 L ( V , W ) L(V,W) L(V,W)

   0 0 0被定义为,如果 0 ∈ L ( V , W ) , ∀ v ∈ V , 0 v = 0 0\in L(V,W),\forall v \in V,0v=0 0L(V,W),vV,0v=0,左零是一个零映射,右零是向量空间W的零向量

   I I I被定义为单位映射(Identity Map),如果 I ∈ L ( V , V ) , ∀ v ∈ V , I v = v I\in L(V,V),\forall v \in V,Iv=v IL(V,V),vV,Iv=v

  一些线性映射的例子包括微分映射和积分映射,映射前后所属的向量空间可以是函数空间

  一些关于线性映射的推论

  向量空间 V V V中的一个基 v 1 , … , v n v_1,\dots,v_n v1,,vn,另一些向量空间 W W W内的向量 w 1 , … , w n ∈ W w_1,\dots,w_n \in W w1,,wnW,则只存在唯一的(Unique)线性映射 T : V → W T:V \rightarrow W T:VW使得 T v j = w j , j = 1 , … , n Tv_j=w_j,j=1,\dots,n Tvj=wj,j=1,,n

线性映射的运算

  如果两个线性映射 S , T ∈ L ( V , W ) S,T\in L(V,W) S,TL(V,W),且有 λ ∈ F \lambda \in F λF则加法和数乘的结果仍然是 V → W V\rightarrow W VW上的线性映射 ∀ v ∈ V , ( S + T ) ( v ) = S v + T v , ( λ T ) ( v ) = λ ( T v ) \forall v \in V, (S+T)(v)=Sv+Tv,(\lambda T)(v)=\lambda(Tv) vV,(S+T)(v)=Sv+Tv,(λT)(v)=λ(Tv) ,注意区分和线性映射的定义

  如果两个线性映射 S ∈ L ( U , V ) , T ∈ L ( V , W ) S\in L(U,V), T\in L(V,W) SL(U,V),TL(V,W),乘法(Product)的结果是 U → W U\rightarrow W UW上的线性映射 ∀ v ∈ V , ( S T ) ( v ) = S ( T v ) \forall v \in V, (ST)(v)=S(Tv) vV,(ST)(v)=S(Tv)

  以下是一些推论

   L ( V , W ) L(V,W) L(V,W)是一个向量空间

  加法满足交换律和结合律,乘法满足结合律,它们满足分配律

  线性映射 T T T总是T(0)=0

   T ∈ L ( V , W ) ,   v 1 , … , v m ∈ V T\in L(V,W),\ v_1,\dots,v_m\in V TL(V,W), v1,,vmV
   T v 1 , … , T v m Tv_1,\dots,Tv_m Tv1,,Tvm线性独立    ⟹    v 1 , … , v m \implies v_1,\dots,v_m v1,,vm线性独立

零空间

  对于线性映射 T ∈ L ( V , W ) T\in L(V,W) TL(V,W) T T T的零空间(Null Space)是 V V V的子集,有 n u l l   T = { v ∈ V ∣ T v = 0 } null\ T=\lbrace v\in V \mid Tv=0 \rbrace null T={vVTv=0}

  可推出, T ∈ L ( V , W ) T\in L(V,W) TL(V,W),零空间 N u l l   T Null \ T Null T是向量空间 V V V的一个子空间

   T ∈ L ( V , W ) ,   v 1 , … , v m ∈ V T\in L(V,W),\ v_1,\dots,v_m\in V TL(V,W), v1,,vmV
   v 1 , … , v m ∉ n u l l   T v_1,\dots,v_m \notin null \ T v1,,vm/null T且线性独立    ⟹    T v 1 , … , T v m \implies Tv_1,\dots,Tv_m Tv1,,Tvm线性独立

一一映射

  一个函数 T : V → W T:V \rightarrow W T:VW称为一一映射(Injective)当且仅当 T u = T v    ⟹    u = v Tu=Tv \implies u=v Tu=Tvu=v

  可推出, T ∈ L ( V , W ) T\in L(V,W) TL(V,W),则 T T T是一一映射的充要条件是 n u l l   T = { 0 } null \ T=\lbrace 0 \rbrace null T={0}

值域

  对于线性映射 T ∈ L ( V , W ) T\in L(V,W) TL(V,W) T T T的值域(Range)是 W W W的子集,有 r a n g e   T = { T v ∣ v ∈ V } range\ T=\lbrace Tv \mid v \in V \rbrace range T={TvvV}

  可推出, T ∈ L ( V , W ) T\in L(V,W) TL(V,W) r a n g e   T range \ T range T是向量空间W的一个子空间

满射

  一个函数 T : V → W T:V \rightarrow W T:VW称为满射(surjective)当且仅当 r a n g e   T = W range \ T = W range T=W

线性映射的一些推论

  • 有限维度的向量空间 V V V,线性映射 T ∈ L ( V , W ) T\in L(V,W) TL(V,W),则 T T T的值域是有限维度的,且有 d i m   V = d i m   n u l l   T + d i m   r a n g e   T dim \ V=dim \ null \ T+dim \ range \ T dim V=dim null T+dim range T

  • d i m   V > d i m   W    ⟹    ∀ T ∈ L ( V , W ) , T   i s   n o t   i n j e c t i v e dim \ V>dim \ W \implies \forall T \in L(V,W),T \ is \ not \ injective dim V>dim WTL(V,W),T is not injective

  • d i m   V < d i m   W    ⟹    ∀ T ∈ L ( V , W ) , T   i s   n o t   s u r j e c t i v e dim \ V<dim \ W \implies \forall T \in L(V,W),T \ is \ not\ surjective dim V<dim WTL(V,W),T is not surjective

  • 对于一个齐次线性方程组,如果变量数多于方程数,则存在非零解

  • 对于一个非齐次线性方程组,如果方程数多于变量数,则存在一类常系数选择使得方程无解

  • s p a n ( v 1 , … , v n ) = V ,   T ∈ L ( V , W )    ⟹    s p a n ( T v 1 , … , T v n ) = r a n g e   T span(v_1,\dots,v_n)=V,\ T\in L(V,W) \implies span(Tv_1,\dots,Tv_n)=range \ T span(v1,,vn)=V, TL(V,W)span(Tv1,,Tvn)=range T

  • S 1 , … , S n S_1,\dots,S_n S1,,Sn是一一映射的线性映射,如果 S 1 S 2 … S n S_1S_2\dots S_n S1S2Sn有意义,则 S 1 S 2 … S n S_1S_2\dots S_n S1S2Sn是一一映射的

  • 向量空间 W W W是有限维度的,线性映射 T ∈ L ( V , W ) T \in L(V,W) TL(V,W),则 T T T是一一映射的充要条件是存在一个线性映射 S ∈ L ( W , V ) S\in L(W,V) SL(W,V)使得 S T = I ST=I ST=I(Idengtity Map)

  • 向量空间 W W W是有限维度的,线性映射 T ∈ L ( V , W ) T \in L(V,W) TL(V,W),则 T T T是满射的充要条件是存在一个线性映射 S ∈ L ( W , V ) S\in L(W,V) SL(W,V)使得 T S = I TS=I TS=I(Idengtity Map)

  • 向量空间 W W W是有限维度的, T 1 , T 2 ∈ L ( V , W ) T_1,T_2\in L(V,W) T1,T2L(V,W),则 n u l l   T 1 ⊂ n u l l   T 2    ⟺    ∃ S ∈ L ( W , W ) , T 2 = S T 1 null \ T_1 \subset null \ T_2 \iff \exist S\in L(W,W),T_2=ST_1 null T1null T2SL(W,W),T2=ST1

  • 向量空间 W W W是有限维度的, T 1 , T 2 ∈ L ( V , W ) T_1,T_2\in L(V,W) T1,T2L(V,W),则 r a n g e   T 1 ⊂ r a n g e   T 2    ⟺    ∃ S ∈ L ( V , V ) , T 1 = T 2 S range \ T_1 \subset range \ T_2 \iff \exist S\in L(V,V),T_1=T_2S range T1range T2SL(V,V),T1=T2S

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《线性代数应该这样学(第三版)》是一本非常经典且实用的线性代数教材。学习这本教材时,我们应该注意以下几个方面。 首先,我们应该充分理解线性代数的基本概念和性质。线性代数是一门抽象且理论性较强的学科,因此掌握基本概念是学习的基础。可以通过反复阅读教材中的定义、定理和例子,加深对线性空间、线性映射、特征值等概念的理解和记忆。 其次,我们要注重实际问题与线性代数的联系。线性代数是应用广泛的数学工具,可以用于解决各种实际问题。在学习中,我们应该将抽象的理论联系到实际问题,并通过例题和习题进行实际操作和练习,提高应用能力。 此外,学习线性代数时,计算和推导也是重要的环节。线性代数涉及到矩阵运算、向量计算、方程求解等内容,因此我们应该掌握相应的计算方法和技巧,熟练运用矩阵变换、矩阵分解等操作。同时,推导和证明也是重要的学习方式,通过推导和证明可以更好地理解和记忆理论知识。 最后,了解线性代数的发展历史和应用前景有助于加深对其重要性和实用性的认识。线性代数是现代数学的重要分支,不仅在数学本身中有广泛应用,也在物理、统计学、计算机科学等领域发挥着重要作用。了解这些背景知识可以激发我们对学习线性代数的兴趣和动力。 通过以上几个方面的学习,我们可以更系统地掌握线性代数的重要内容和基本方法,提高自己的应用能力和数学思维能力。《线性代数应该这样学(第三版)》是一本很好的教材,通过认真学习和实践,相信我们可以在线性代数领域取得良好的学习成果。 ### 回答2: 《线性代数应该这样学第三版pdf》是一本非常有价值的线性代数学习资料。首先,这本书以清晰的结构和简洁的表达方式介绍了线性代数的基本概念和原理。逐章逐节地展开,有助于读者逐步掌握线性代数的核心内容。 其次,这本书的内容既重视理论又注重实践。书中不仅提供了详细的数学推导和证明,还给出了大量的例题和习题,帮助读者巩固所学知识,并能应用于实际问题的解决。这种理论与实践相结合的学习方法,使得读者更加深入地理解线性代数的概念和应用。 此外,这本书还包含了大量的图示和示例,使得抽象的数学理论更加直观和易于理解。通过图示的辅助,读者可以更清楚地理解线性代数中的向量、矩阵和线性变换等概念,并将其与实际问题联系起来。 最后,这本书的作者非常注重思维培养和问题解决能力的发展。他们在教学过程中,引导读者通过提出问题和思考来加深对线性代数的理解。同时,他们还提供了一些拓展阅读和研究的方向,鼓励读者深入学习和探索线性代数的更高层次。 总而言之,《线性代数应该这样学第三版pdf》是一本内容丰富、结构清晰、理论实践结合的线性代数学习资料,适合初学者和进阶学习者使用。通过认真阅读和练习,读者可以全面掌握线性代数的基本概念和方法,并具备解决实际问题的能力。 ### 回答3: 线性代数是数学中的一个重要分支,主要研究向量空间、线性变换与线性方程组等内容。第三版的《线性代数应该这样学》是学习线性代数的经典教材,下面介绍一下如何使用该教材进行学习。 首先,学习线性代数需要有一定的数学基础,包括矩阵与向量的基本概念、初等线性变换的定义以及解线性方程组的方法等。在学习过程中,可以利用教材提供的练习题进行巩固知识点,加深理解。 其次,阅读教材时应注重理解其中的定理、证明和推导过程。线性代数是一门较为抽象的学科,如果只是死记硬背公式和定理,容易忘记和混淆。通过理解其背后的原理和推导过程,可以对线性代数的思想和方法有更深刻的把握。 此外,实际应用和计算是线性代数学习的重要环节。教材中通常会有一些例题和应用实例,可以通过解题和计算来加深对线性代数的应用理解。同时,可以借助计算机工具如Matlab等进行线性代数相关问题的计算和实验,从而加深对线性代数概念和方法的理解。 最后,线性代数是一门需要大量练习的学科,只有通过反复的练习和巩固才能真正掌握线性代数的基本原理和方法。因此,阅读教材的同时,要多做习题,加强对知识的运用和理解。 总之,使用第三版《线性代数应该这样学》这本教材学习线性代数,需要注重理解定理和证明,加强实际应用和计算,多做习题巩固知识,并且通过练习来提高对线性代数的掌握程度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值