线性代数(6)- 线性映射第四讲

线性代数(6)- 线性映射第四讲

线性泛函数

   T ∈ L ( V , F ) T\in L(V,F) TL(V,F),则 T T T可以被称为是一个线性泛函数(Linear Functional)

对偶空间

   V ′ = L ( V , F ) V'=L(V,F) V=L(V,F),则 V ′ V' V称为 V V V的对偶空间(Dual Space)

   V V V是有限维度的,则可推出, V ′ V' V是有限维度的且 d i m   V ′ = d i m   V dim\ V'=dim\ V dim V=dim V

   v 1 , … , v n v_1,\dots,v_n v1,,vn V V V的一组基,则 v 1 , … , v n v_1,\dots,v_n v1,,vn的对偶基(Dual Basis)是一个 V ′ V' V上的向量组 φ 1 , … , φ n \varphi_1,\dots,\varphi_n φ1,,φn,其中有 φ j ( v k ) = { 1 , k = j 0 , k ≠ j \varphi_j(v_k)= \begin{cases} 1,k=j\\ 0,k\neq j \end{cases} φj(vk)={1,k=j0,k=j

  如果 V V V是有限维度的,则其的基对于 V ′ V' V的对偶基是后者的基

对偶映射

   T ∈ L ( V , W ) T\in L(V,W) TL(V,W),则 T T T的对偶映射(Dual Map) T ′ T' T定义为 ∀ φ ∈ W ′ , T ′ ( φ ) = φ ∘ T \forall \varphi \in W',T'(\varphi)=\varphi \circ T φW,T(φ)=φT

  可推出, T ′ T' T是线性映射,且有以下性质

  • ∀ S , T ∈ L ( V , W ) , ( S + T ) ′ = S ′ + T ′ \forall S,T \in L(V,W),(S+T)'=S'+T' S,TL(V,W),(S+T)=S+T
  • ∀ λ ∈ F , T ∈ L ( V , W ) , ( λ T ) ′ = λ T ′ \forall \lambda \in F,T\in L(V,W),(\lambda T)'=\lambda T' λF,TL(V,W),(λT)=λT
  • ∀ T ∈ L ( U , V ) , S ∈ L ( V , W w ) , ( S T ) ′ = T ′ S ′ \forall T \in L(U,V),S\in L(V,Ww),(ST)'=T'S' TL(U,V),SL(V,Ww),(ST)=TS

零化子

   U U U是向量空间 V V V的一个子集,则 U U U的零化子(Annihilator) U 0 U^0 U0定义为 U 0 = { φ ∈ V ′ ∣ ∀ u ∈ U , φ ( u ) = 0 } U^0=\lbrace \varphi \in V' \mid \forall u \in U,\varphi(u)=0\rbrace U0={φVuU,φ(u)=0}

  可推出,零化子是一个子空间

   V V V是有限维度的, U U U是它的子空间,则 d i m   U + d i m   U 0 = d i m   V dim\ U+dim\ U^0=dim\ V dim U+dim U0=dim V

对偶映射的一些推论

   V , W V,W V,W是有限维度的, T ∈ L ( V , W ) T \in L(V,W) TL(V,W),则有

  • n u l l   T ′ = ( r a n g e   T ) 0 null\ T'=(range\ T)^0 null T=(range T)0
  • d i m   n u l l   T ′ = d i m   n u l l   T + d i m   W − d i m   V dim\ null \ T'=dim\ null\ T+dim\ W-dim\ V dim null T=dim null T+dim Wdim V
  • T T T是满射的当且仅当 T ′ T' T是一一映射的
  • r a n g e   T ′ = ( n u l l   T ) 0 range\ T'=(null\ T)^0 range T=(null T)0
  • d i m   r a n g e   T ′ = d i m   r a n g e   T dim\ range \ T'=dim\ range\ T dim range T=dim range T
  • T T T是一一映射的当且仅当 T ′ T' T是满射的

矩阵的转置

  矩阵 A A A的转置(Transpose) A t A^t At定义为 ( A t ) k , j = A j , k (A^t)_{k,j}=A_{j,k} (At)k,j=Aj,k

  可推出 ( A C ) t = C t A t (AC)^t=C^tA^t (AC)t=CtAt

   T ∈ L ( V , W ) T\in L(V,W) TL(V,W),则 M ( T ′ ) = ( M ( T ) ) t M(T')=(M(T))^t M(T)=(M(T))t

矩阵的秩

  矩阵的行秩(Row Rank)被定义为其行向量组展开的空间的维度,列秩(Colomn Rank)被定义为列向量组展开的空间的维度

   V , W V,W V,W是有限维度的, T ∈ L ( V , W ) T\in L(V,W) TL(V,W) d i m   r a n g e   T dim\ range\ T dim range T等于 M ( T ) M(T) M(T)的列秩

  可推出,一个矩阵的行秩总是等于列秩,于是统称为矩阵的秩

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值