证明p-norm是凸函数
回顾一下 p-norm的定义,为:
∣
∣
x
∣
∣
p
=
(
∑
i
=
1
n
∣
x
i
∣
p
)
1
/
p
||x||_p=(\sum_{i=1}^{n}|x_i|^p)^{1/p}
∣∣x∣∣p=(∑i=1n∣xi∣p)1/p
结论
- 首先给出结论:当 0 < p < 1 0<p<1 0<p<1时,Minkowski 不等式不成立, ∣ ∣ x ∣ ∣ p ||\mathbf{x}||_p ∣∣x∣∣p未滿足向量范数要求的三角不等式,故不能稱為范数(尽管我們仍可以計算它)。当 1 ≤ p < ∞ 1 \le p< \infty 1≤p<∞时,等式成立,故为凸函数。
性质
- 当
1
≤
p
<
∞
1 \le p< \infty
1≤p<∞时,向量
ℓ
p
−
\ell_p-
ℓp−范数具有如下三个性质:
1.非负性:对于 x ∈ R n \mathbf{x}\in\mathbb{R}^n x∈Rn, ∥ x ∥ p ≥ 0 \Vert\mathbf{x}\Vert_p\ge 0 ∥x∥p≥0 且 ∥ x ∥ p = 0 \Vert\mathbf{x}\Vert_p=0 ∥x∥p=0 仅当 x = 0 \mathbf{x}=\mathbf{0} x=0。
2.正齐次性:对于任一純量 c 和 x ∈ R n , ∥ c x ∥ p = ∣ c ∣ ∥ x ∥ p \mathbf{x}\in\mathbb{R}^n,\Vert c\mathbf{x}\Vert_p=\vert c\vert \Vert \mathbf{x}\Vert_p x∈Rn,∥cx∥p=∣c∣∥x∥p。
3.Minkowski 不等式:若 x , y ∈ R n , 則 ∥ x + y ∥ p ≤ ∥ x ∥ p + ∥ y ∥ p \mathbf{x},\mathbf{y}\in\mathbb{R}^n,則 \Vert \mathbf{x}+\mathbf{y}\Vert_p\le\Vert\mathbf{x}\Vert_p+\Vert\mathbf{y}\Vert_p x,y∈Rn,則∥x+y∥p≤∥x∥p+∥y∥p。
证明:
- 使用定义即可證明
ℓ
p
−
範
數
∥
x
∥
p
,
1
≤
p
<
∞
\ell_p-範數 \Vert\mathbf{x}\Vert_p,1\le p<\infty
ℓp−範數∥x∥p,1≤p<∞,是一個凸函數。對於
x
,
y
∈
R
n
且
0
≤
λ
≤
1
\mathbf{x},\mathbf{y}\in\mathbb{R}^n 且 0\le\lambda\le 1
x,y∈Rn且0≤λ≤1,根據正齊次性和 Minkowski 不等式,立得:
∥ λ x + ( 1 − λ ) y ∥ p ≤ ∥ λ x ∥ + ∥ ( 1 − λ ) y ∥ p = λ ∥ x ∥ p + ( 1 − λ ) ∥ y ∥ p . \displaystyle\begin{aligned} \Vert \lambda\mathbf{x}+(1-\lambda)\mathbf{y}\Vert_p&\le\Vert\lambda\mathbf{x}\Vert+\Vert(1-\lambda)\mathbf{y}\Vert_p\\ &=\lambda\Vert\mathbf{x}\Vert_p+(1-\lambda)\Vert\mathbf{y}\Vert_p. \end{aligned} ∥λx+(1−λ)y∥p≤∥λx∥+∥(1−λ)y∥p=λ∥x∥p+(1−λ)∥y∥p.
若 0 < p < 1 0< p<1 0<p<1, ∥ x ∥ p \Vert\mathbf{x}\Vert_p ∥x∥p 不是一個凸函數,因為 Minkowski 不等式不復成立。
更详细的推导请见,参考:
关于p-norm的证明