【LLM大模型】Embedding模型概念、源码分析和使用示例

本篇对嵌入模型的概念、Spring AI 框架对支持嵌入模型的设计,并对其源码进行分析,最后对API接口进行使用。



Embedding模型是RAG(Retrieval-Augmented Generation)技术的核心。也是大模型应用落地必不可少的技术。


什么是Embedding模型

Embedding模型是指将高维度的数据(例如文字、图片、视频)映射到低维度空间的过程。简单来说,embedding向量就是一个N维的实值向量,它将输入的数据表示成一个连续的数值空间中的点。 image.png 如图 通俗易懂的描述:嵌入就相当于给文本穿上了“数字化”的外衣,目的是让机器更好的理解和处理。

Embedding 起源于 Word Embedding。

  • 横向发展:Word Embedding -> Item Embedding -> Entity Embedding -> Graph Embedding -> Position Embedding -> Segment Embedding。
  • 纵向发展:由静态的Word Embedding(如Word2Vec、GloVe和FastText) -> 动态预训练模型(如ELMo、BERT、GPT、GPT-2、GPT-3、ALBERT、XLNet等)。大型语言模型可以生成上下文相关的 embedding 表示,可以更好地捕捉单词的语义和上下文信息。

使用场景

  • 自然语言处理: 将单词或句子转换成向量表示,用于文本分类,机器翻译,情感分析等任务。
  • 推荐系统:将用户和产品映射成向量表示,从而能够更好地理解用户的喜好和匹配物品。
  • 图像处理:将图像转换成向量表示,用于图像分类,对象检测等任务。

解决问题

  • 降维:在高维度空间中,数据点之间可能存在很大的距离,使得样本稀疏,嵌入模型可以减少数据稀疏性。
  • 捕捉语义信息:Embedding不仅仅是降维,更重要的是,它能够捕捉到数据的语义信息。语义相近的词在向量上也是相近的
  • 特征表示:原始数据的特征往往难以直接使用,通过嵌入模型可以将特征转换成更有意义的表示。
  • 计算效率:在低维度空间中对数据进行处理和分析往往更加高效。

Spring AI 框架集成的嵌入模型

在 Spring AI 框架中仅支持了国内的智普嵌入模型,对于国内其它的嵌入模型没有支持,如果想使用其它模型,自行接入。

Huggingface上可以看到对嵌入模型的性能对比; image.png

嵌入模型源码分析

设计理念

Spring AI 以可移植性简单性 的设计理念,统一的抽象EmbeddingModel,旨在与AI和机器学习中的嵌入模型直接集成。

  • 可移植性:可确保在各种嵌入模型之间轻松适应。它允许开发人员在不同的嵌入技术或模型之间切换,只需最少的代码更改。这种设计符合Spring的模块化和可互换性理念。
  • 简单性:消除了处理原始文本数据和嵌入算法的复杂性,使开发人员无需深入研究底层机制就可以在应用中直接使用。

设计思想

EmbeddingModel类的集成关系如下图(图来自官方网站)所示 image.png 提供统一抽象类EmbeddingModel提供给使用者,而不必了解其内部的实现细节,快速集成嵌入模型。

EmbeddingModel源码

EmbeddingModel作用是调用大模型嵌入模型,将文本,图片或者视频转换为向量。

java
复制代码
public interface EmbeddingModel extends Model<EmbeddingRequest, EmbeddingResponse> {
    //嵌入模型访问统一抽象接口,不同的大模型实现该方法完成各自的嵌入逻辑
    @Override
    EmbeddingResponse call(EmbeddingRequest request);

    // 将从文档中抽取出来的Document转换为向量,其中Document对象是在Spring AI文本抽取定义
    // 后续文章会对文档的解析进行说明
    List<Double> embed(Document document);
    
    // 将文本转换为向量
    default List<Double> embed(String text) {
        Assert.notNull(text, "Text must not be null");
        return this.embed(List.of(text)).iterator().next();
    }
    
    // 将一组文本转换为对应的一组向量
    default List<List<Double>> embed(List<String> texts) {
        Assert.notNull(texts, "Texts must not be null");
        return this.call(new EmbeddingRequest(texts, EmbeddingOptions.EMPTY))
                .getResults()
                .stream()
                .map(Embedding::getOutput)
                .toList();
    }

    default EmbeddingResponse embedForResponse(List<String> texts) {
        Assert.notNull(texts, "Texts must not be null");
        return this.call(new EmbeddingRequest(texts, EmbeddingOptions.EMPTY));
    }

    // 返回向量的维度,比如OpenAI的 text-embedding-ada-002的维度为1536
    // 在AbstractEmbeddingModel中有处理逻辑,在embedding-model-dimensions.properties
    // 中有定义,没有定义的会通过测试文本向嵌入模型请求返回
    default int dimensions() {
        return embed("Test String").size();
    }

}

对于EmbeddingRequest请求对象和EmbeddingResponse返回对象,仅是简单的对象,不做特殊说明。

EmbeddingModel实现类

image.png

可以根据需求,选择符合自己需求的嵌入模型。在选择嵌入模型时应该考虑 【响应时间的要求】、【存储限制】、【预算约束】、【多语言支持】等来选择

代码示例(Ollama:gemma:2b 为例)

特别提醒,如果还不知道如何使用Ollama本地部署大模型的请阅读:# 10. Ollama:本地部署大模型 + LobeChat:聊天界面 = 自己的ChatGPT

yml配置:

yml
复制代码
spring:
  ai:
    ollama:
      base-url: http://localhost:11434
      embedding:
        options:
          model: gemma:2b

代码实现

java
复制代码
package org.ivy.controller;

import jakarta.annotation.Resource;
import org.springframework.ai.embedding.EmbeddingRequest;
import org.springframework.ai.embedding.EmbeddingResponse;
import org.springframework.ai.ollama.OllamaEmbeddingModel;
import org.springframework.ai.ollama.api.OllamaModel;
import org.springframework.ai.ollama.api.OllamaOptions;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.List;

@RestController
public class EmbeddingController {

    @Resource
    private OllamaEmbeddingModel ollamaEmbeddingModel;

    @GetMapping("/text")
    public List<Double> textEmbedding(String text) {
        return ollamaEmbeddingModel.embed(text);
    }

    @GetMapping("texts")
    public EmbeddingResponse embedding(List<String> texts) {
        EmbeddingRequest request = new EmbeddingRequest(texts,
                OllamaOptions.create().withModel(OllamaModel.GEMMA.getModelName())
        );
        return ollamaEmbeddingModel.call(request);
    }
}

验证结果 image.png 结果就是返回一组向量,具体如何实现,底层的算法是什么,大家自行学习了,不知道并不影响你开发应用。但是对概念还是的要清晰的理解的。

总结

本篇文章主要介绍了嵌入模型的概念,作用,使用场景。并分析了Spring AI框架实现嵌入的设计理念以及源码分析。

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import numpy as np from lightrag import LightRAG, QueryParam from lightrag.utils import EmbeddingFunc from lightrag.llm import openai_embedding from lightrag.llm import openai_complete_if_cache # 模型全局参数配置 根据自己的实际情况进行调整 OPENAI_API_BASE = "https://api.wlai.vip/v1" OPENAI_CHAT_API_KEY = "sk-dUWW1jzueJ4lrDixWaPsq7nnyN5bCucMzvldpNJwfJlIvAcC" OPENAI_CHAT_MODEL = "gpt-4o-mini" OPENAI_EMBEDDING_MODEL = "text-embedding-3-small" # 检测并创建文件夹 WORKING_DIR = "./output" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) # 自定义Chat模型 配置类OpenAI async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs) -> str: return await openai_complete_if_cache( model=OPENAI_CHAT_MODEL, prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=OPENAI_CHAT_API_KEY, base_url=OPENAI_API_BASE, **kwargs ) # 自定义Embedding模型 配置类OpenAI async def embedding_func(texts: list[str]) -> np.ndarray: return await openai_embedding( texts, model=OPENAI_EMBEDDING_MODEL, api_key=OPENAI_CHAT_API_KEY, base_url=OPENAI_API_BASE, ) # 定义rag rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=1536, max_token_size=8192, func=embedding_func ) ) # 构建索引 with open("./input/book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # # local检索 # print( # rag.query("这个故事的核心主题是什么?", param=QueryParam(mode="local")) # ) # # global检索 # print( # rag.query("这个故事的核心主题是什么?", param=QueryParam(mode="global")) # ) # # hybrid检索 # print( # rag.query("这个故事的核心主题是什么?", param=QueryParam(mode="hybrid")) # ) # # naive检索 # print( # rag.query("这个故事的核心主题是什么?", param=QueryParam(mode="naive")) # ) 这里为什么我的 LightRAG, QueryParam标红?
03-09
<think>好的,我现在要解决用户的问题:为什么在Python代码编辑器中,LightRAGQueryParam这两个名称会被标红,以及如何解决。首先,我得分析可能的原因,然后给出对应的解决方案。 首先,用户提到的两个标识符LightRAGQueryParam在代码中被标红,通常编辑器(比如PyCharm、VSCode)会标红的原因可能有几种:拼写错误、未导入的模块或类、未定义的变量或类型,或者类型注解问题。我需要逐一排查这些可能性。 第一个可能:拼写错误。用户需要检查是否拼写正确。比如,LightRAG是否应该是LightRag或者有其他大小写问题?QueryParam是否应该连起来或者分开写?例如,有时候可能应该是Query_Param或者QueryParams。这时候建议用户仔细核对文档或源码中的正确拼写。 第二个可能性是未导入相关模块。如果这两个名称属于某个第三方库或自定义模块,用户可能没有正确导入。比如,如果LightRAG是一个类,可能在某个模块中,需要from module import LightRAG。同样,QueryParam可能来自FastAPI的Query参数,或者某些web框架中的定义。例如,FastAPI中可以使用Query来定义查询参数,这时候需要从fastapi导入Query。如果用户没有导入,编辑器就会标红。这时候需要检查导入语句是否正确,或者是否安装了对应的库。 第三个可能性是未安装对应的库。比如,如果LightRAG属于某个特定的包,用户可能没有安装这个包。例如,使用pip install安装相应的库。如果用户没有安装,那么导入时会报错,编辑器也会标红。这时候需要用户确认是否安装了必要的依赖,或者检查虚拟环境是否正确配置。 第四个可能性是类型注解问题。例如,用户可能在代码中使用类型注解,比如def func(param: QueryParam):,但QueryParam可能是一个自定义的类型或者从某个库导入的类型,如果没有正确导入或定义,编辑器会提示错误。此时,用户需要确认类型名称是否正确,或者是否使用了正确的类型注解,例如使用typing模块中的Optional、Any等,或者第三方库的特定类型。 接下来,针对每个可能性,需要给出具体的解决步骤。比如,检查拼写,检查导入语句,安装依赖,处理类型注解等。同时,可能需要用户提供更多的代码上下文,比如出现错误的代码片段,以便更准确地诊断问题。不过用户可能没有提供具体代码,所以需要给出一般性的建议。 另外,可能涉及到框架或库的特定用法。比如,如果QueryParam是用于FastAPI的查询参数,正确的用法应该是使用Query函数,例如:async def read_item(q: str = Query(None)),这时候Query是从fastapi导入的。如果用户错误地使用了QueryParam而不是Query,或者没有导入Query,就会导致错误。这时候需要用户检查是否混淆了参数名称,或者是否正确使用了框架提供的装饰器或函数。 对于LightRAG,可能是一个自定义类或第三方库中的组件。例如,如果用户正在使用某个RAG(Retrieval-Augmented Generation)相关的库,可能需要安装对应的包,如rag-lib或类似名称。用户需要确认该名称是否属于某个特定的库,或者是否是用户自己定义的类,但未在代码中正确声明。 总结下来,解决步骤可能包括: 1. 检查拼写是否正确。 2. 确认是否导入了相应的模块或类。 3. 确认是否安装了所需的第三方库。 4. 检查类型注解是否正确,或是否存在自定义类型未定义的情况。 5. 查看框架文档,确认正确的用法导入路径。 用户可能需要根据具体情况逐一排查这些可能。如果问题仍然存在,可能需要提供更多的代码细节或错误信息,以便进一步诊断。</think>### LightRAGQueryParam标红问题分析与解决 #### 原因分析 1. **未导入相关模块** - `LightRAG`或`QueryParam`可能属于第三方库或自定义模块,若未正确导入,编辑器会标红。例如: ```python # 若未导入FastAPI的Query from fastapi import Query # 正确导入方式 ``` 2. **拼写错误** - 检查是否将`QueryParam`误写为`QueryParams`,或`LightRAG`的大小写错误(如`LightRag`)。 3. **未安装依赖库** - 如果`LightRAG`来自特定库(如RAG框架),需通过`pip install`安装对应包。 4. **类型注解未定义** - 若在类型注解中使用`QueryParam`,需确认其来源(如`from typing import Union`或自定义类)。 --- #### 解决方法 1. **检查导入语句** - 确保从正确的模块导入: ```python # 示例:FastAPI中Query的导入 from fastapi import Query ``` 2. **安装缺失的库** - 使用`pip`安装相关依赖: ```bash pip install fastapi # 示例安装FastAPI pip install lightrag # 假设LightRAG属于此库 ``` 3. **验证拼写与大小写** - 对照文档检查名称一致性,例如`QueryParam`可能应为`Query`或`Path`[^1]。 4. **处理自定义类型** - 若为自定义类,需在代码中明确定义: ```python class LightRAG: pass # 实现类逻辑 ``` --- #### 示例代码修正 ```python from fastapi import Query # 正确导入Query def fetch_data(query_param: str = Query(None)): # 使用Query而非QueryParam from lightrag import LightRAG # 假设LightRAG来自lightrag库 rag = LightRAG() return rag.process(query_param) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值