本周期内其实最热的还是Llama3,但是上周刚刚入选,就换成Ollama了。来看看这一周内火爆的5个项目吧。
#1 ollama
- 项目名称:ollama - 本地运行LLM
- GitHub 链接:github.com/ollama/olla…
- 上周 Star 数:4300+
Ollama可以说是目前最好的本地运行大模型工具,所以每当有一个现象级的大模型发布后,它也都会跟随着产生一波热度。
Ollama 是一个强大的框架,设计用于在 Docker 容器中部署 LLM。Ollama 的主要功能是在 Docker 容器内部署和管理 LLM 的促进者,它使该过程变得非常简单。它帮助用户快速在本地运行大模型,通过简单的安装指令,可以让用户执行一条命令就在本地运行开源大型语言模型,例如 Llama 3,Mistral, Gemma。
之前我在开源推荐专栏中介绍过Ollama,Ollama是几个本地运行大模型工具中比较不错的一个,现在关于Ollama的介绍越来越多,而且它本身也非常简单,基本不需要过多说明。它支持比较全面,下面是主要支持的模型。
通过Ollama启动一个Llama3非常简单,下载安装包完成安装后,执行以下,就可以在本地运行Llama3了:
#拉取llama3
ollama pull llama3
#启动
ollama run llama3
Ollama一个非常方便的地方是提供了本地的HTTP服务,这让和大模型的交互方便了许多。参考如下:
#Generate a response
curl <http://localhost:11434/api/generate> -d '{
"model": "llama3",
"prompt":"Why is the sky blue?"
}'
#Chat with a model
curl <http://localhost:11434/api/chat> -d '{
"model": "llama3",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
}'
另外还出了2个官方的库,Ollama-python和Ollama-js,更加方便了开发者进行集成。现在网上也有超级多的和Ollama集成的教程和工具。
#2 LLaMA-Factory
- 项目名称:LLaMA-Factory - 微调工具
- GitHub 链接:github.com/hiyouga/LLa…
- 上周 Star 数:3000+
LLaMA-Factory是一个统一的框架,集成了一套先进的高效训练方法。它允许用户通过内置的Web UI灵活定制100多个LLMs的微调,而无需编写代码。
高效的 fine-tuning 对于将大型语言模型落地式至关重要的,很多时候微调所带来的效果可以让大语言模型提升几个档次。LLaMA-Factory可以帮我们节省在多个模型上进行训练的大量工作。
与 ChatGLM 官方的 P-Tuning 微调相比,LLaMA Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
项目特色:
- 多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练和 ORPO 训练。
- 多种精度:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
- 先进算法:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
- 实用技巧:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
- 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
支持的训练方法:
LLaMA-Factory由三个主要模块组成:模型加载器(Model Loader)、数据处理器(Data Worker)和训练器(Trainer)。
#3 twenty
- 项目名称:twenty - Salesforce 替代
- GitHub 链接:github.com/twentyhq/tw…
- 上周 Star 数:2700 +
twenty 是一个开源的CRM平台,它自称 NO.1 的开源CRM。它也提出要成为Salesforce的开源替代。
项目团队花费了数千个小时来研究 Pipedrive 和 Salesforce 等传统 CRM,以使它们与业务需求保持一致,但最终却感到沮丧——定制非常复杂,而且这些平台的封闭生态系统可能会让人感到受到限制。他们认为企业需要一个能够增强而非限制的 CRM 平台,这应该来自开源社区。
Twenty 提供了强大的功能,让您能够完全控制并帮助您高效地运营业务。以下是一部分功能
- 添加、过滤、排序、编辑和跟踪客户
- 为每家公司创造一个或多个机会
- 查看时间线中显示的丰富笔记任务
- 在记录上创建任务
- 使用键盘快捷键和搜索快速浏览应用程序
Twenty的特点包括:
开源可控:不在受供应商的控制。
重新定义数据: 使用现有数据源,不在需要导入和转移数据。
轻松直观:户友好的和可定制界面。
因为是海外的开源项目,所以涉及的一些关联产品也都是偏海外,所以如果在国内使用可能需要一些适应,另外如果需要也可以参与开源来扩展能力。
#4 open-webui
- 项目名称:open-webui - LLM的Web UI
- GitHub 链接:github.com/open-webui/…
- 上周 Star 数:2600+
Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 WebUI,旨在完全离线操作。它支持各种 LLM 运行程序,包括 Ollama 和 OpenAI 兼容的 API。
这个项目和刚刚第一个介绍的Ollama组合起来就很方便,由Ollama来提供本地的大模型能力,然后用Open WebUI来提供一个可视化的使用界面,一个完整的本地大模型运行方案的建立起来了。
而且本身项目的能力也非常强,项目的特点包括:
- ️直观的界面:我们的聊天界面从 ChatGPT 中汲取灵感,确保用户友好的体验。
- 响应式设计:在桌面和移动设备上享受无缝体验。
- ⚡快速响应:享受快速响应的性能。
- 轻松设置:使用 Docker 或 Kubernetes无缝安装,以获得无忧体验。
- 主题定制:从各种主题中进行选择,个性化您的 Open WebUI 体验。
- 代码语法突出显示:通过我们的语法突出显示功能增强代码的可读性。
- 本地 RAG 集成:通过突破性的检索增强生成 (RAG) 支持深入了解聊天交互的未来。
- 多个模型对话:轻松地同时与多个模特互动
本地启动open-webui也非常方便,利用docker可以方便的将它启动,如果Ollama已经在本地运行,执行以下命令即可:
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
同时在项目组的roadmap中也还有非常多的功能等待实现:
- 本地文本转语音集成
- 精细的权限和用户组
- 函数调用
- 微调模型(LoRA)
- 长期记忆
#5 Awesome-Chinese-LLM
- 项目名称: Awesome-Chinese-LLM - 中文LLM资料
- GitHub 链接:github.com/HqWu-HITCS/…
- 上周 Star 数:1500+
自ChatGPT为代表的大语言模型(Large Language Model, LLM)出现以后,由于其惊人的类通用人工智能(AGI)的能力,掀起了新一轮自然语言处理领域的研究和应用的浪潮。尤其是以ChatGLM、LLaMA等平民玩家都能跑起来的较小规模的LLM开源之后,业界涌现了非常多基于LLM的二次微调或应用的案例。本项目旨在收集和梳理中文LLM相关的开源模型、应用、数据集及教程等资料,目前收录的资源已达100+个!
在通用的模块基础上,这个项目的资料还会深入到各个具体的领域,分别整理了国内在这个方面的相关资料和教程等信息,每一个部分开头作者都会先提供一个思维导图,我觉得这个还是蛮直观的。
总之在中文大模型这个领域,有这样一个整理知识库还是挺好的,可以帮助很多有需要的人快速查找信息,也希望中文大模型可以发展的越来越好吧。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓