全网催更的大模型爆款书《从零构建大模型》,中文版来了!

2025 年,人工智能依然是科技圈最热的风口。ChatGPT、Claude、DeepSeek 等模型层出不穷,不断刷新人们对 AI 能力的想象。而支撑这一切的,正是大语言模型(LLM)——这个曾经只是大厂的专属!

但问题来了:构建一个属于自己的大模型,真的非得依赖大团队、大算力、大预算不可吗?

其实未必!

Build a Large Language Model (From Scratch) 这本书,正在彻底打破这个思维定式。作者不仅深入讲解了 LLM 的理论和未来,更是在用一套极具操作性的工程路线图,告诉你:即使只有一台普通笔记本,也能从零开始训练一个 LLM

这本书一上线就引发了全球开发者的广泛关注——GitHub 上斩获 43.7k 星标,Amazon 美区评分高达 4.7 分。

图片

图片

作者塞巴斯蒂安·拉施卡(Sebastian Raschka)也早就是技术社区里的“红人”了。他的视频教程在 YouTube 上被无数 AI 爱好者点赞收藏,评论区常常出现“看完我就上手了”“原来训练大模型没那么遥不可及”这样的反馈。

不少人看完作者视频教程的学习者,立刻动手实践,甚至已经训练出了属于自己的“小模型”,并在 Hugging Face 上部署 Demo,开源代码,分享日志。

在 YouTube、Twitter 等平台上,#TrainYourOwnLLM 的话题持续升温,评论区几乎被“我居然真的训出来了!”刷屏。可以说,这本书不只是一本讲方法论的工具书,更像是一次大模型开发的行动指南。

它让 LLM 不再高高在上,而是真正进入了普通开发者的工具箱里。

如果你曾幻想过用自己的代码构建一个大模型,如果你想真正理解 GPT、DeepSeek 等模型背后的运行逻辑,如果你厌倦了只会“调用接口”而不知其所以然——那这本书,可能正是你一直在等的那一本。

这本书到底讲了啥?

这是一本注重实战、内容透彻的 LLM 入门书。作者手把手带你亲手构建训练微调一个属于自己的大模型。从数据准备到预训练,从指令微调到模型部署,每一步都讲得清清楚楚,还配有代码、示意图,手把手带你实现。

另外,作者还在中文版里首次新增了有关 DeepSeek 的深度解析,让读者能够学到最前沿的技术!

🔹 从零开始:自己动手构建模型架构!

🔹 模型训练:教你如何准备数据、搭建训练管道,并优化模型效果!

🔹 让 LLM 更聪明:微调、加载预训练权重,让你的 LLM 适应不同任务!

🔹 人类反馈微调(RLHF):让 LLM 学会理解指令,避免胡言乱语!

🔹 轻量级开发:一台普通笔记本就能跑,告别「算力焦虑」!

68747470733a2f2f73656261737469616e72617363686b612e636f6d2f696d616765732f4c4c4d732d66726f6d2d736372617463682d696d616765732f6d656e74616c2d6d6f64656c2e6a7067.jpeg

(本书内容要点导图)

为什么这本书不一样?

❌ 拒绝「调包侠」套路:不依赖任何现成 LLM 库,真正理解底层逻辑。

✔️ 可视化+代码示例:连训练数据准备都拆成「小白操作指南」。

🔥 彩蛋级技巧:用人类反馈优化模型表现,打造更听话、更智能的 AI。

这不仅仅是一本“教科书”,更是一场硬核的 AI 之旅。当你亲手打造一个 LLM 时,黑盒不再是黑盒,你会真正理解大模型的工作原理,构建出属于自己的应用!

附上中文版思维导图:

图片


作译者是谁?

作者塞巴斯蒂安·拉施卡(Sebastian Raschka),极具影响力的人工智能专家,GitHub 项目 LLMs-from-scratch 的 star 数达 43.7k。

现在大模型独角兽公司 Lightning AI 任资深研究工程师。博士毕业于密歇根州立大学,2018~2023 年威斯康星大学麦迪逊分校助理教授(终身教职),从事深度学习科研和教学。

 

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 从开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值