配置yolov5所需环境
一、安装anaconda与pycharm
首先需要下载anaconda与pycharm,这两个工具均可从官网直接下载。
anaconda:https://www.anaconda.com/products/individual#macos
pycharm:https://www.jetbrains.com/pycharm/download/#section=windows
选择适合自己电脑的版本下载即可,网上很多anaconda和pycharm下载安装教程,这里就不详细介绍了。
二、安装CUDA
首先在NVIDIA控制面板中查看自己电脑的cuda版本,我的版本是cuda11.0。
在官网下载对应的版本,所有版本:https://developer.nvidia.com/cuda-toolkit-archive
下载好后进行安装
安装完成后可在cmd中用nvcc --version检查是否成功安装:
三、安装pytorch
在pytorch官网查看自己适合的环境,
之后在anaconda prompt中先创建yolov5虚拟环境,输入:conda create -n yolov5 python=3.8
进入环境:conda activate yolov5
安装pytorch,输入:conda install pytorch torchvision torchaudio cudatoolkit=11.0
若下载过程太慢,可以使用清华源镜像,输入:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
安装完成后检查是否成功安装,输入:
python
import torch
torch.cuda.is_available()
四、配置yolov5所需环境
首先下载yolov5源码,https://github.com/ultralytics/yolov5
按照requirement.txt文件逐个进行安装
依次输入:
pip install Cython
pip install numpy
pip install opencv-python
pip install matplotlib
pip install pillow
pip install tensorboard
pip install PyYAML
pip install torchvision
pip install scipy
pip install tqdm
全部安装好之后运行detect.py进行测试
可以自己找图片放在data/images进行测试,测试结果如下:
到此yolov5所需环境就配置成功啦~