windows下训练yolov5
1. 安装所需要的环境
如果我们经常调用别人的代码,那么不同代码所需要的环境基本上都是不同的,所以一定要对于每一个代码(你经常跑的话)创建一个独立的虚拟环境
conda create -n yolov5 python=3.8 # 创建虚拟环境python版本为3.8
# 安装pytorch的gpu版本,注意这里有个疑问,cuda和cudnn需不需要重新安装呢?或者需不需要安装?
# 去pytorch官网根据CUDA支持的版本,只要不超过就行,低于支持版本是可以的,选择相应的命令。
# 经过测试我的CUDA版本和cudnn都是11.1,并且好像是不需要安装cuda和cudnn的,直接用pytorch上面的命令好像就可以了,后面有新的结论会修改的。这里不是很确定,因为我的CUDA是自己电脑安好的,cudnn没安装,并且我的cuda是11.1版本,但是pytorch的gpu版本不需要选择11的,或者是只要在一个虚拟环境中安装cuda和cudnn,其他的环境中就不要安装了?
pip install torch===1.7.1 torchvision===0.8.2 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
# 安装requirement.txt,注意这里requirement.txt文件需要放在你当前终端所在目录,如果之前下载源下载慢的话可以用这里的豆瓣源即加上-i https://pypi.douban.com/simple/
pip install -i https://pypi.douban.com/simple/ -U -r requirements.txt
2. 测试一下环境是否正确
# yolov5s.pt是模型权重,需要下载之后放在yolov5-master中
python detect.py --source data/images/bus.jpg --weights yolov5s.pt
3. 制作自己的数据集
4. 修改配置文件
必须修改的文件有两个,一个是配置链接数据集的文件data/你的数据集名字.yaml
,具体内容就三部分:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KIdxcm63-1611320915909)(C:\Users\rain\AppData\Roaming\Typora\typora-user-images\image-20210122204957221.png)]
train后面是训练集路径,val后面是验证集路径,nc是类别数,names是具体的类别名称。
另外一个需要修改的是权重文件models/yolov5s.yaml
中的类别。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-POECDfk1-1611320915911)(C:\Users\rain\AppData\Roaming\Typora\typora-user-images\image-20210122205350435.png)]
将nc修改为自己的类别数量。
5. 开始训练
# 训练代码,--weights后面的是权重文件,你也可以不加,直接写为'',不过这样训练会很慢,需要很多次数,--epochs后面是训练次数,--img是图片统一尺寸到640*640,--batch是一个batch数量,注意这里默认是16,如果你的计算机内存较小,需要改小一些,这里我的是4。
python train.py --img 640 --batch 4 --epochs 150 --data data/F4k_RGHS.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt
# 测试代码
python detect.py --sources 要测试的图片路径 --weights 训练好的权重`在这里插入代码片`
##
![修改检测框的粗细,越小越小细](https://img-blog.csdnimg.cn/20210223134230398.png)