论文总结4-Towards Universal Representation Learning for Deep Face Recognition

论文地址

https://openaccess.thecvf.com/content_CVPR_2020/papers/Shi_Towards_Universal_Representation_Learning_for_Deep_Face_Recognition_CVPR_2020_paper.pdf

 

摘要:提出了一种通用学习框架,可处理给定训练数据中看不到的较大变化,而无需利用目标领域知识。首先综合训练数据和一些语义上有意义的变化,如低分辨率,遮挡和头部姿势。由于直接将这些新增的数据送入训练框架将很难收敛,因为大多数据是难样本。提出将特征嵌入分成几个子嵌入,在训练过程中,为每个子嵌入关联不同置信值。通过对不同分区上的变异分类损失和变异对抗性损失进行正则化,进一步去关联子嵌入。

 

主要贡献:

  1. 一种人脸表示学习框架,通过将它们与不同的变体相关联来学习通用的特征,从而改进了对不同测试数据集的泛化。
  2. 基于置信感知的识别损失,利用训练过程中样本置信度,从难样本中学习特征。
  3. 一种特征去关联正则化方法,在子嵌入的不同分区上同时应用变异分类损失和变异对抗性损失,提高了性能。
  4. 有效结合合成数据的训练策略,训练出适用于原始分布之外图像的人脸表示。

 

相关工作:

与以往方法的不同之处主要有两点:

  1. 学习相似度度量的方法,而不是用于检测或分类任务。
  2. 与模型无关。通过计算未见类的样本之间的两两相似度,通过本文的模型学习到的特征可以直接应用到不同的领域。

 

实现

概括说明:

  1. 首先引入三种可增强的变化:模糊、遮挡和姿态,以增强训练数据。
  2. confidence-aware identification loss:学习难样本
  3. 将特征向量分解为独立置信度的子嵌入
  4. 提出了一种非可扩充的变异方法,以探索更多的变异来获得更好的去相关。
  5. 提出了一种不确定引导的成对度量用于推理。

 

详细:

1. Confidence-aware Identification Loss:

被分类为身份的后验概率。

:输入样本

:第个样本的特征嵌入

:第个身份原型向量

:概率嵌入网络,将每个样本都看做一个高斯分布

在特征空间,是第类样本的概率:

D:特征维度

假设分配每一个样本给任何身份的先验相等,xi为第j类的后验概率:

,对进行L2归一化,则式(4)中,,代入,得,:

方程(5)的自信感知后验器效果如下图所示:

假设所有样本都具有相同置信度,那么学习到的原型就会位于所有样本中心(上图a所示)。这并不合理,因为低质量样本传达的身份信息更加模糊。相反,如果设置样本特性置信度,高质量样本的置信度更高,它会促使原型与高质量样本更加相似,从而使后验最大化。同时,在更新嵌入时,更有力推动了低质量向原型靠拢。

 

添加边界损失能有效缩小身份内分布:

:样本的gt label

该损失函数优势:

每张图有其独立、动态的而不是一个共享的常量

边界参数m不是与相乘,的独立性使它可以在网络训练中以特定样本的方式对的梯度信号进行门控,因为训练样本的置信度(变异程度)会有较大的差异。虽然样本是特定的,但是我们的目标是追求一个齐次的特征空间,使得跨不同的恒等式的度量是一致的。

2.Confidence-aware Sub-Embeddings:

问题:

尽管通过特定样本门控学习可以处理样本间的变化,但是本身的相关性仍然很大。为了最大化表示能力和实现紧凑的特征大小,必须对嵌入的条目进行去相关。进一步将整个嵌入分解为分区的子嵌入,每个子嵌入进一步被分配一个标量置信度。

做法:

将整个特征嵌入划分为K个等长子嵌入,同样,原型向量和置信标量被分为相同大小的K组:

每个子嵌入都进行L2归一化到一个单位球面,最终的识别损失为:

增加了一个额外的l2正则化来限制置信值不会任意增大:

3. Sub-Embeddings Decorrelation:

问题:

只设置多个子嵌入不能保证不同组的特征是学习互补信息。如果用不同的正则化方法对子嵌入进行惩罚,可以降低子嵌入之间的相关性。

做法:

将不同的子嵌入与不同的变异关联起来,对所有子嵌入的一个子集进行变异分类损失,同时对其他变异类型进行变异对抗性损失。在多个变量的情况下,这两个正则化项被强制放在不同子集,从而得到更好的子嵌入去相关性。

 

对每个增加的变化,生成一个对应的二值mask:,它随机选择所有子嵌入里的K/2子集,同时将另一半置零。对不同的变化,mask不同。反映第t个变化,但对其它变量不变。建立一个多标签二值判别器C,通过从每个mask子集学习预测所有的变化。

判别损失:

是已知变化的二值labels(0/1),是真值标签

 

嵌入网络的分类和对抗性损失:

分类所示限制了成为变异的特异性,对抗损失限制了其他变异的不变性。只要没有两个mask是相同的,就能保证所选子集在功能上不同于其它',从而实现了'的去相关。最终Loss:

4. 挖掘更多变化:

问题:

可扩充遍历的有限数目(我们的方法中为3)导致去相关效应有限,因为数目太小。

为进一步增强去相关性,以及引入更多的变异以提高泛化能力,目标是探索更多的语义变异。

此外,并不是所有的变异都容易进行数据扩增,比如微笑或不笑就很难扩增。对于这种变异,我们尝试从原始训练数据中挖掘出变异标签

做法:

利用现成的属性数据集,训练一个具有身份对抗损失的属性分类模型:

:属性label

:身份label

:输入人脸图像

:CelebA数据集中身份数量

第一项对特征进行惩罚以分类面部属性,第二项对特征进行惩罚使其对身份不变。

然后将属性分类器应用到识别训练集中,生成T个新的软变异标签,比如笑或不笑。这些额外变化的二进制标签与原始的可增加的变化标签合并,然后纳入去相关学习框架:

5. 不确定性引导概率聚合:

问题:

考虑到推理的度量,简单地取学习的子嵌入的平均值是次优的。因为不同的子嵌入对不同的变异表现出不同的辨别能力,它们的重要性应该根据给定的图像对而变化。

做法:

应用与每个嵌入相关的不确定性来获得两两的相似度评分:

总结:

提出了一种通用的人脸表示学习框架,用于识别各种变化下的人脸。首先通过数据扩充,在MS-Celeb-1M训练集中引入三种可命名的变化。传统方法在直接将增加的难例输入训练时,会遇到收敛问题。提出一种自信感知的表示学习方法,通过将嵌入划分为多个子嵌入,并放宽对样本和子嵌入的专一性。进一步提出变异分类和变异对抗性损失,以解关联子嵌入。利用不确定性模型进行推理,对子嵌入进行正确的聚合。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值