YOLO系列笔记(六)—— 使用labelimg标注数据集
该笔记给大家介绍一款简单的软件labelimg,用来给自己的数据集中添加标注框和类别标签。该软件的下载地址为:https://github.com/HumanSignal/labelImg/releases。大家下载最新款即可。
下载后对该压缩包进行解压,并打开,打开后即可看到labelimg.exe执行文件。
打开后该软件界面如下:
此时就可以打开图片或者数据集图片文件夹了,点击左边导航栏里的Open或者Open Dir。
建议一次性打开一整个文件夹,这样可以通过左边导航栏中的Next Image(蓝色右箭头)和Prev Image(蓝色左箭头)跳转到后一张和前一张。
当图片准备就绪,就可以对图片中的某个物体进行标注了。通过点击左边导航栏中的Create \nRectBox,对想要标注的物体进行矩形框框选并设定标签。
点击标签弹窗中的OK即可完成框选和标签。
完成标注后需要进行保存,此时可以自定义保存文件夹:点击左边导航栏中的Change Save Dir,决定将框选后的.xml文件保存路径。
选择好保存的文件夹后,即可点击左边导航栏中的Save,保存与该图片同名的.xml文件。
保存后在对应的文件夹里可以查到与图片文件同名的.xml文件,打开后会看到对应的图片信息以及框选的标签种类和位置。
该.xml文件打开后内容如下:
但此时的.xml文件不能直接用于深度学习网络的训练和测试,需要将该文件中的相关数据提取出来并进行处理,将所有需要的信息转换成.txt文件存到labels文件夹中才能进行后续的训练和测试。相关代码笔者会在后续的笔记中介绍并分析。
看到这里如果觉得该笔记对您有用的话,可以点个小小的赞,或者点赞收藏关注一键三连ヾ(◍’౪`◍) ~ 谢谢!!