MIFDELN: A multi-sensor information fusion deep ensemble learning network for diagnosing bearing fa

MIFDELN:一种用于噪声环境下轴承故障诊断的多传感器信息融合深度集成学习网络

ABSTRACT

由于滚动轴承运行环境恶劣,采集到的振动信号中含有较强的噪声干扰,传统方法难以直接从原始信号中有效提取故障信息。此外,传统的基于单个传感器的诊断方法往往难以获得满意的诊断结果,因为忽略了不同传感器之间的互补信息。

针对这些问题,本文提出了一种用于轴承故障诊断的多传感器信息融合深度集成学习网络(MIFDELN)

首先,采用基于复合指数的加权融合策略对采集到的多传感器信号进行有机融合,既避免了对质量较差的传感器信号的选择,又抑制了原始信号中部分强噪声干扰;
其次,提出了跨尺度注意特征提取模块(CAFEM),通过跨尺度学习和注意权重增强,从融合信号中自动学习判别特征,降低无用特征信息的影响;
随后,引入加权拓扑学习模块(WTLM),进一步挖掘空间结构特征,增强学习特征的鲜明性

最后,利用softmax分类器完成故障识别。通过两个实验验证了该方法的有效性和优越性

结果表明,与几种具有代表性的多传感器融合技术相比,该方法在提取判别特征方面具有最高的精度和最强的鲁棒性。

1. Introduction

滚动轴承作为核心部件广泛应用于大型机械设备、航空航天、轨道交通等领域,为旋转部件之间提供支撑和平稳运行[1]。
由于高速和重载的工作环境,轴承容易出现一系列故障,如磨损和过热。如果不及时发现和更换故障轴承,可能会导致不必要的经济损失,甚至对操作人员的工作环境和安全造成重大危害[2,3]。因此,考虑到经济效益和安全意识,对轴承健康状态进行实时监测和智能故障诊断是工业生产所必需的[4,5]

目前,数据驱动的故障诊断方法已成为研究热点。传统的故障诊断框架包括信号处理、特征提取和模式识别
处理大量原始数据的工作可能会非常繁重,对计算能力的要求也很高。这可能导致处理时间延长和计算负担加重。

常用的信号处理方法有变分模态分解(VMD)[6,7]、经验模态分解(EMD)[8]、小波变换(WT)[9]、奇异谱分解(SSD)[10]。\

其次,根据专家经验提取有效特征;

最后,利用模式识别方法学习有效的故障特征并进行分类

流行的模式识别方法包括支持向量机(SVM)[11]、k近邻算法(KNN)[12]和极限学习机(ELM)[13]。Li等[14]将ELM与KNN相结合用于冷水机组多故障诊断。该方法在多故障数据较少的情况下,在诊断精度上取得了重大突破。

Ye等[15]利用改进的卷积神经网络(CNN)来识别使用变分模提取处理的信号。

Yang等[16]首先采用堆叠降噪自编码器对振动信号中的噪声进行滤波。

随后,计算出信号的改进复合多元 计算出信号的改进型多尺度样本熵,并将其输入用于检测轴承故障状态的 SVM

上述方法虽然可以完成故障诊断,但由于是多阶段组合方法,存在一定的明显局限性

它们不容易处理高维特征,需要借助人工经验进行降维处理以提取敏感特征。

对于复杂的故障场景和大规模的数据,这些方法的分类性能较差,需要更多的资源和时间

深度学习是一种集特征提取和模式识别于一体的端到端学习方法,可以在不需要人为干预的情况下,自主地从原始数据中获取深刻而突出的特征,有效地解决了传统学习方法的局限性。

cnn[17]、深度信念网络(deep belief networks, DBN)[18]和自编码器[19]是深度学习算法的代表,在轴承故障诊断方面取得了显著的成果
Zhang等[20]首先使用多个深度收缩自编码器并行学习特征,然后对每个自编码器的分类结果进行加权重组,得到最终的诊断结果。这种方法可以比传统的自动编码器更有效地处理噪声数据。

Tang等[21]在DBN中引入混合池化层,不仅减少了模型参数的总体数量,而且实现了对复合故障的高效诊断。Kumar等[22]在CNN中引入了基于熵的正则化技术,避免了过拟合,利用声学图像实现了离心泵的缺陷监测。

Hu 等人[23]采用压缩传感技术简化了原始数据,减少了模型训练时间。 他们还设计了改进的多尺度网络来挖掘深度特征,这些技术的结合大大提高了故障诊断性能。 这两者的结合大大提高了故障诊断性能

考虑到与故障连接微弱的振动信号中的一些时间尺度特征会影响诊断性能,Kim等[24]提出了一种新的多尺度路径关注残差网络来增强多尺度结构的特征表示能力。

Ye等[25]提出了一种鲁棒多尺度学习网络,用于解决实际工程应用中同时存在的样本不平衡和强噪声干扰问题

Huang等[26]在每个尺度卷积后加入通道注意机制,对学习到的特征进行自适应评分和分配权重,增强了特征的可分辨性

图卷积网络(GCN)是对结构化数据CNN的扩展
与传统的深度学习方法相比,GCN具有更强的关系可表达性,可以有效地从图结构数据中提取空间特征

Yu等[27]首先利用样本特征及其欧氏距离构造图结构数据,然后将图结构数据输入到图加权强化网络中进行节点特征聚合和分类

该方法提高了小样本和强噪声的诊断准确性。

Li等人[28]利用图生成层作为连接关系,将CNN与GCN结合起来,充分利用了样本的序列和结构特征

这解决了在可变运行条件下轴承故障诊断的挑战。

通常使用多个传感器来获取轴承的振动信号。上述诊断方法的输入均来自单个传感器,可能存在传感器选择不当和遗漏重要故障信息的问题

为了充分利用来自多个传感器的数据信息,Li等[29]使用与输入数据数量相等的亚历卷积核自适应地将多传感器数据融合为一个输入,并使用1D CNN进行特征提取。

然而,对卷积扩张的设定依赖于人工经验Zhou等[30]从多个传感器信号中提取奇异值,并将其构造为图结构数据输入,用于特征融合和故障分类。奇异值作为模型的输入特征破坏了振动信号的结构,可能导致缺乏有用的故障信息。

Wang等[31]提出了一种三级融合方法,将振动和扭矩信号的特征进行融合,并使用softmax分类层对融合后的特征进行分类。

实验表明,该方法的诊断准确率可达99.8%。

然而,该方法涉及过多的特征拼接操作,可能会增加最终学习到的特征映射的冗余度

此外,由于存在强烈的噪声干扰,有用的故障信息常常被噪声淹没。当信号被强噪声淹没时,这些多传感器融合诊断方法仍然具有挑战性和不稳定性

针对现有故障诊断方法对故障信息利用不足、强噪声干扰下识别精度低的问题,提出了一种用于轴承故障诊断的多传感器信息融合深度集成学习网络(MIFDELN)

MIFDELN主要由基于复合指数的加权融合策略(WFSBCI)、跨尺度注意力特征提取模块(CAFEM)和加权拓扑学习模块(WTLM)组成

首先,利用WFSBCI将采集到的多传感器信号融合成一个输入数据集,获得更丰富的故障信息并抑制噪声干扰;

其次,CAFEM通过对输入数据的跨尺度学习和注意增强,使学习到的特征更加明显和丰富。CAFEM的输出不仅可以作为下一个模块的输入,还可以在后续模块中重用,减少了网络传输过程中特征信息的丢失

随后,利用WTLM进一步学习三个cafem的融合特征,不仅挖掘样本本身的特征,还根据邻居关系学习相邻样本的特征,使学习到的特征更加全面

最后,采用softmax分类器完成故障识别。本研究的主要贡献如下:

(1) MIFDELN不仅充分利用了多源信号丰富的故障特征,而且提高了故障诊断的可靠性和鲁棒性

(2)采用WFSBCI融合多传感器信号,提供丰富的故障信息,避免传感器数据选择不当,抑制噪声干扰

(3) CAFEM旨在通过跨尺度学习和注意增强来增强特征多样性和辨别能力

(4)通过对两个实例的分析,验证了所提方法的有效性和抗噪性。通过与其他传统故障和多传感器融合诊断方法的比较,突出了该方法的优越性。

本文的其余部分结构如下。第2节介绍了CNN和GCN相关研究的基础理论。第3节提出了拟议的MIFDELN。第4节描述了滚动轴承故障诊断框架的过程。第5节描述了所建议方法的验证。最后,第6节给出了本研究的结论

2. 相关的研究

2.1. 卷积神经网络

为解决传统神经网络中存在的参数数量多、参数共享不足等问题,人们提出了 CNN,并在图像分类 [32]、目标检测 [33] 和故障诊断 [34] 等任务中取得了突破性进展。CNN的关键组成部分是卷积层、激活层和池化层。卷积层通过一组可学习的卷积窗口对输入数据进行卷积运算,提取局部特征。随后,利用激活函数对提取的特征进行非线性变换。池化层使用池化窗口来选择最明显的局部特征。在池化之前引入了批归一化(Batch normalization, BN),以加速梯度传播和网络收敛[35]。CNN的主要数学表达式是

在这里插入图片描述
式中,x为输入数据;Wb分别表示权重和偏差;R×1为池化窗口;σ(⋅)定义激活函数BN(⋅)pool(⋅)定义归一化和池化操作。

这四个组件通常作为一个整体模块应用于深度学习网络,称为卷积池块。因此,情商。(1)可简化为
在这里插入图片描述

2.2. 图卷积网络

图卷积是对传统卷积网络的扩展,用于处理不规则图数据[36]。

图卷积的核心思想是利用节点的邻居信息进行特征的传播和聚合。对于给定的图G(a,X),拉普拉斯矩阵表示为
在这里插入图片描述
式中,In为单位矩阵;AD分别表示邻接矩阵和度矩阵;X表示特征矩阵。L的另一种表示是L = UΛUT。因此,图卷积可以表示为:
在这里插入图片描述
式中,x表示节点特征;gθU分别为图卷积滤波器和正交矩阵;Λ = diag([Λ 0,…]在这里插入图片描述是一个由特征值组成的对角矩阵。

然而,上述图卷积表达式的计算成本很高。使用k阶Chebyshev多项式来表示卷积核,以减少计算成本[37]。
k阶Chebyshev展开式表示为:
在这里插入图片描述
在这里插入图片描述分别表示切比雪夫系数的向量和节点邻域的范围。

将式(5)代入式(4),式(4)可变换为
在这里插入图片描述

在实际实现中,GCN的输入由节点特征和邻接矩阵组成。权重参数用w
表示,因此可以将方程简化为

3. Proposed method

3.1. 基于综合指数的加权融合策略

使用不同的传感器收集的轴承数据包含不同的故障信息
为了充分利用多传感器数据的故障信息,避免因传感器数据选择不合适而导致诊断准确率低,必须正确有效地融合多传感器信息进行轴承故障诊断

基于指标(如量纲、无量纲或频域指标)的数据级融合策略已被广泛应用。

然而,使用单一指标来融合多传感器信号很容易导致权重分配不合理,特别是对于具有强非线性和重噪声干扰的振动信号。
在这里插入图片描述

因此,考虑到振动信号的能量、峰度因子和信息熵,本文提出了一种新的融合策略WFSBCI。WFSBCI的流程图如图1所示。

详细的融合过程如下。

5个传感器采集到的原始振动信号为在这里插入图片描述在这里插入图片描述。首先计算每个传感器信号的相关能、峰度因子和信息熵,表示为:
在这里插入图片描述
在这里插入图片描述
其中,Nm 分别表示信号长度和时间位移、 分别表示信号长度和时间位移。
由于此处计算的是传感器信号的自相关系数,因此 m 设为 0
μ 是振动信号的平均值,p(n) 是概率表示。

然后,根据式计算综合指数。(8) -(10),能更灵敏地反映振动信号中故障信息的明显程度。综合指数表示为

在这里插入图片描述
同时,自适应加权融合函数表示为:
在这里插入图片描述
最后,对多传感器数据进行融合,得到融合信号:
在这里插入图片描述
此外,还利用快速傅里叶变换将融合后的振动信号转换为频域数据。
使用快速傅里叶变换将融合后的振动信号转换为频域数据,以获得更多特征
在这里插入图片描述
式中FFT(⋅)为快速傅里叶变换函数。
总的来说,WFSBCI减少了来自数据层的噪声。

对复合指数较大的传感器信号赋予较大的权重。相反,具有较小综合指数的传感器信号被赋予较小的权重

该策略可以融合多个传感器信号的有效故障特征,同时抑制传感器信号中的突出噪声。

3.2. 跨尺度注意特征提取模块(CAFEM)

由于轴承的故障特征是多层次的,高级特征需要大尺度卷积,低级特征需要小尺度卷积,我们提出了CAFEM

不同分支的特点是相互联系、相互促进的

因此,采用跨尺度学习方法进行特征融合,以丰富特征的多样性。

为了充分利用合并特征中的有用信息,我们实现了一种注意方法来增强显著信息。

总的来说,CAFEM放大了总体网络的感知场,并赋予输出特征更高的多样性和独特性

图2显示了CAFEM的架构。假设CAFEM的输入为X,其详细的数学公式如下:

在这里插入图片描述
首先,使用三个不同大小的卷积对输入进行多尺度学习,这有助于在不同尺度上分解和分析信号。所有的卷积层都包含修正线性单元(ReLU)激活函数。它们的表达式如下 :
在这里插入图片描述
与传统的多尺度架构不同,本文将相邻的分支连接起来,实现跨尺度学习。 小卷积运算得到的特征不仅输入到跳跃连接运算中进行特征融合,而且输入到相邻分支大卷积中进行新的卷积运算。跨尺度学习使网络能够处理不同尺度的噪声和特征。它们表示如下:

在这里插入图片描述

随后,将三个不同尺度的卷积并联连接,实现跨尺度特征融合,融合后再加入1 × 1的卷积运算,调整特征通道数。
在这里插入图片描述
为了提高融合特征中有用信息的利用率,我们使用了一个注意机制来重新校准信道特征响应。即根据通道特征的重要程度,自适应地为每个通道分配一个关注值[0,1]。
在这里插入图片描述式中GAP(⋅)为全局平均池化(GAP)操作;FC1(⋅)FC2(⋅)
表示两个神经元数量不同的完全连接(FC)操作分别操作;ψ表示注意权重。σ1(⋅)σ2(⋅)表示ReLU和sigmoid活化

最后,将注意力向量与融合特征相乘得到CAFEM的输出特征,从而减弱干扰信息的影响。
在这里插入图片描述
总的来说,CAFEM的作用是在特征学习阶段去除残余干扰信息,提取有用的故障特征信息。首先,对输入信号并行进行三次不同尺度的卷积运算,从多个尺度上捕获故障特征,有助于分离信号中的噪声和有价值的故障特征分量;其次,通过建立相邻分支之间的连接进行跨尺度学习,进一步增强网络在不同尺度下处理噪声和特征的能力。最后,采用注意机制抑制残留干扰信息的影响,提高对有用信息的感知。

3.3. 加权拓扑学习模块(WTLM)

在本节中,我们提出了WTLM,通过多次并行图卷积操作来进一步探索空间结构特征。WTLM的结构如图3所示。具体描述如下:
在这里插入图片描述
首先,构建图构造层(GCL),将序列特征数据X转换为图结构数据。根据节点间的关联强度构造加权邻接矩阵,更准确地描述图数据的结构和特征。
在这里插入图片描述
不同尺度的图卷积可以关注不同的局部邻域结构,提取不同层次的特征。
因此,本文引入多尺度图卷积,从不同尺度的邻接矩阵和卷积核参数中捕捉图数据的不同特征。多尺度图卷积可以表示为:
在这里插入图片描述
式中Hi为与不同相邻域进行切比雪夫图卷积后得到的图特征。
然后对不同尺度的信息进行整合,提高WTLM在整个图上的全局理解和建模能力。
在这里插入图片描述
式中Concatenate(⋅)为级联操作,G为级联后的特征。
最后,对融合的特征进行额外的图卷积,可以进一步学习更高层次和更抽象的图表示
在这里插入图片描述
其中,0表示加权拓扑学习模块的输出。

3.4. 多传感器信息融合深度集成学习网络(MIFDELN)

在这里插入图片描述
在这里插入图片描述

在本节中,提出了MIFDELN。它主要由WFSBCI、CAFEM和WTLM组成。 MIFDELN 的结构如图 4 所示具体如下:
首先,采用基于复合指标的加权融合策略,将多传感器数据融合到一个输入中;
在这里插入图片描述
然后,使用卷积池运算对输入信号进行处理,不仅可以初步提取特征,还可以降低维数和计算量。
在这里插入图片描述
其次,采用CAFEM对卷积池化得到的特征进行学习,使输出特征更加多样化和判别性。此外,CAFEM的输出不仅用作下一层的输入,还可以在后续模块中重用
因此,CP模块和CAFEM按照上述连接方式堆叠两次。在最后的堆叠中不使用池化层。
这样,后续模块可以更好地利用前一个模块的信息,从而促进重要信息在网络中的流动和传递,提高网络的学习性能。
在这里插入图片描述
在这里插入图片描述
完成上述操作后,使用全局平均池化将三个cafem的输出特征进行平化,并根据Eq.(30)将平化后的特征进行连接。
在这里插入图片描述
利用WTLM对空间结构特征进行全局特征学习和挖掘,使输出样本特征更加全面和丰富。
在这里插入图片描述
最后,利用softmax函数进行故障类型判别。

在这里插入图片描述

  • 29
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值