Ensemble Multiple Distinct ResNet Networks With Channel-Attention Mechanism for Multisensor Fault Di

液压系统多传感器故障诊断的通道关注机制集成多个不同的ResNet网络

Abstract

液压系统在现代工业中有着广泛的应用,研究高效、准确的液压系统故障诊断技术有助于预防事故的发生,减少经济损失。现有的基于深度学习的智能诊断方法大多只采用单通道信号进行诊断,可能会忽略一些重要的故障信息。此外,现有的深度学习算法无法区分通道间特征的敏感性,无法强调通道域的重要特征。针对上述问题,本文提出了一种多通道数据驱动的液压系统故障诊断框架(CM-ResNet),该框架集成了不同的ResNet网络和通道关注机制

首先,通过连续小波变换(CWT)将多通道信号转换成二维特征映射;

然后,基于每个通道的信号训练多个CM-ResNet作为基学习器

第三,将每个基学习器的类别概率连接成新的特征向量

最后,使用新的特征向量训练元学习器并进行故障诊断

元学习器可以捕捉基础学习器之间复杂的非线性关系,从而获得更强的学习器。实验结果表明,该方法的性能优于对比方法和现有方法。

I. INTRODUCTION

液压系统是一种具有突出特点的流体传动系统。液压系统由于其不可替代的工作特性和优点,被广泛应用于各种机械产品,如飞机、船舶、汽车等。对于许多类型的工程机械和冶金设备来说,液压系统是最核心的部件。然而,液压系统是一个由多个系统耦合而成的复杂系统,大多数元件工作在高度密封的环境中[1]。液压系统故障具有隐蔽性、多样性和复杂性等特点,传统的故障检测方法很难快速确定故障原因[2], [3], [4]。故障检测的困难制约了液压系统的进一步推广和发展 [5]、[6]、[7]。因此,液压系统的故障诊断受到了研究人员的广泛关注。

传统的故障诊断方法可分为基于经验的方法和基于模型的方法两大类[8],[9]。基于经验的故障诊断方法依靠专业人员的先验知识进行主观诊断或建立相应的专家系统[10]。基于经验的故障诊断方法不需要建立复杂的液压系统数学模型,易于应用。然而,专家知识的获取是非常困难的,当知识不足或系统过于复杂时,容易出现误诊。基于分析模型的故障诊断方法需要建立精确的系统数学模型,通过可观测的输入输出量构建残差信号来反映系统期望行为与实际行为的不一致性,然后根据对残差信号的分析进行故障诊断[11]。

基于模型的诊断方法具有较高的可解释性和复合故障诊断能力。然而,液压系统通常是高度集成的复杂系统,具有非线性和不确定性,无法用简单的数学模型来表达[12]。建立精确的液压系统数学模型往往是一项具有挑战性的任务,而且花费巨大。

近年来,随着机械系统智能化程度的提高,在运行过程中积累了大量的数据[13],[14]。因此,数据驱动的故障诊断方法已成为发展趋势,其中基于机器学习的方法受到广泛关注并取得了大量成果[15],[16]。Jung和Koh[17]利用离散小波变换的多尺度能量分析提取特征,然后利用k近邻进行轴承故障诊断。Wang等[18]分别提取信号的时域、频域和时频域特征,基于信息熵进行特征选择,最后利用支持向量机(svm)对液压系统故障进行分类。Jin等[19]基于小波变换从压力信号中提取若干特征作为特征向量,然后利用小波神经网络识别液压系统的密封磨损和内泄漏。以上研究都是基于传统的浅层机器学习算法。

由于浅层机器学习算法不能自提取特征,其性能依赖于人工设计的特征提取算法[20]。当该模型应用于新任务时,需要经验丰富的专业人员花费大量时间进行试验,以筛选出敏感特征。

深度学习是机器学习最重要的分支之一,在机器翻译、语音识别、计算机视觉等领域取得了许多成就,远远超过了以往的相关技术。

深度学习通过构建具有多个隐藏层的深度网络对特征进行变换,从原始样本输入中自动学习高级非线性特征表示,克服了传统浅层机器学习算法依赖特征工程的缺点。卷积神经网络(CNN)作为深度学习中最具代表性的算法之一,在故障诊断领域也得到了广泛的应用[21]。

Jiang等[22]利用经验小波变换对信号进行降噪后提取时频域特征,然后利用一维CNN对轴向柱塞泵进行状态监测和故障诊断。

Shen和Zhao[23]将归一化后的液压系统压力信号直接馈送到一维多通道CNN中,实现了端到端的飞机液压系统故障诊断。Tang等[24]利用连续小波变换(CWT)将振动、压力和声音信号转换成二维时频图,然后利用深度CNN进行故障诊断。Huang等[25]提出了一种多通道一维CNN,实现了多速率信号特征的同时提取。Sun等[26]提出了一种改进的残差密集网络,通过多变换域融合实现轴承故障诊断。Tang等[27]采用深度自适应归一化CNN和同步压缩小波变换实现液压泵智能故障识别。多通道数据比单通道数据包含更多的信息,有利于网络得到充分的训练和更好的预测。传统的机器学习算法手工提取特征,容易将各个通道的特征融合并输入到网络中。对于深度学习算法来说,直接融合多通道原始信号会导致维数的损失。

因此,在一些基于深度学习的液压系统故障诊断研究中,只使用单通道数据。一些研究人员设计了具有多通道数据的多个输入的并行网络,但这种网络通常是为特定任务而设计的,当应用于新任务时,需要具有专业知识的人员重新设计。

深度学习克服了传统浅学习算法需要人工提取特征的局限性,但这种学习方法难以充分利用多通道信号进行故障诊断

与上述深度学习算法不同,集成学习是一种通过训练多个学习器并将其集成来解决问题的方法[28]。综合方法可以带来几个好处[29]:1)在统计方面,结合多个假设可以减少诊断错误的可能性;2)在计算上,结合不同的假设可以降低局部最优假设选错的风险;3)在表示能力上,可以通过组合不同的假设来扩展假设空间,机器学习算法可以对未知的假设进行更精确的逼近。

Guo等[30]提出了液压系统故障诊断的集成支持向量机框架。他等[31]提出了一种基于多通道信息的综合cnn框架来诊断旋转机械故障。Li等[32]提出了一种改进的集成经验模态分解和极值学习机方法用于液压泵故障诊断。虽然上述方法通过集成学习有效地提高了故障诊断的性能,但上述方法中使用的基础学习器无法区分特征的重要性。此外,上述集成学习方法大多采用投票方法对基础学习器进行集成。由于无法反映基学习器之间复杂的非线性关系,投票法可能会产生较大的学习误差

为了解决上述问题,本文提出了一种多通道数据驱动框架,将不同的ResNet网络与通道关注机制(CM-ResNet)相结合,用于液压系统的故障诊断
通过多个不同的CM-ResNet分别提取不同传感器信号中的故障信息,然后采用集成学习策略对其进行集成

由于ResNet只能在单一尺度上提取特征,因此我们设计了一个多尺度特征提取模块来提取多尺度故障特征

此外,网络中还嵌入了频道关注模块,以加强对重要特征的关注。利用堆叠策略将多个基础学习器结合起来,并通过元学习器自适应地学习基础学习器之间复杂的非线性关系

所提出的框架可以诊断液压系统中的多种故障,并识别元件的不同退化程度。本文的主要贡献概述如下。
1)提出了一种新的用于液压系统多传感器数据驱动故障诊断的深度集成学习框架。

2)为了提取多尺度重要通道域特征,在深度残差网络中引入了通道注意机制和多尺度感受野机制。

3)采用堆叠学习策略组合多个基学习器,可以自适应学习基学习器之间的非线性关系,从而获得更高的性能。

4)在公开的液压故障数据集上对该方法进行了测试,结果表明,该方法能够有效地实现液压系统的故障诊断,优于比较方法。

本文其余部分的结构如下。第二节介绍了所提出的故障诊断框架和所使用的理论方法。实验的细节和结果见第三节。第四部分对研究工作进行了总结和展望。

2 理论背景

A. Residual Network

由于前向传播过程中图像信息的不断丢失,CNN的性能可能会随着网络层数的增加而下降,这种现象被称为网络退化。网络退化现象限制了网络的深度,难以进一步提高深度学习的性能。残差网络[33]引入了短连接结构,可以有效地促进信息在网络中的传播,从而抑制网络退化现象。常见残差单元如图1所示,当输入X和F具有相同维数时,残差块定义如下:

在这里插入图片描述
其中函数F (X,{wi})表示残差映射,对应图1(a)中的两个卷积层或图1(b)中的三个卷积层。
在这里插入图片描述
当输入X和F的维数不同时,可以通过快捷连接添加一个线性映射w来匹配维数,残差块可以用下式来描述:
在这里插入图片描述
从模块的输入到输出的恒定映射路径称为短连接。通过快捷连接保留了输入中包含的特征信息,减轻了前向传播过程中有效信息的衰减。图1(a)中的残差块通常用于浅层网络。当网络较深时,使用图1(b)中的单元可以提高训练速度。

B.渠道-注意机制

残差网络在提取空间域特征和促进信息传播方面是有效的,但无法区分特征映射的哪个通道对分类更重要。因此,我们引入了一种基于ResNet的通道注意机制[34]。通道注意机制可以自动学习通道之间的依赖关系,自适应调整各通道的特征响应值,其结构如图2所示。图中C为通道数,H、W为特征图的大小。
在这里插入图片描述

通道注意机制可分为挤压和激发两个阶段。在压缩阶段,需要将每个通道的全局空间信息压缩成实数个特征。因此,我们对每个通道执行全局平均池化以获得通道级统计信息。通道特征z∈rc通过对空间维度H × w的输入特征U进行全局平均池化得到[35],对于z的每个元素,计算如下:
在这里插入图片描述
在激励阶段,需要捕获通道之间的进一步依赖关系。通道间的依赖关系是非互斥的和非线性的,而不是像单热编码那样互斥的。因此,通道注意单元采用s形门机制来获得通道的权重因子,可以用下式表示:
在这里插入图片描述
其中δ(∗)为ReLU函数,W1∈R (c×c/ R), W2∈R (c×c/ R)。为了增强网络的非线性能力,采用了两个全连通层。

此外,还利用瓶颈结构加快了训练速度。在第一个全连通层中引入缩紧参数r,将维数降为C/r,在第二个全连通层中重新缩放为原始维数。在本文中,缩放比r为8。每个通道的最终输出可以通过以下公式获得
在这里插入图片描述
模块的最终输出X ~ = [~ x1, X ~ 2,…], x≈c], Fscale(∗)表示通道特征映射uc及其特征权重sc的乘法。通道注意机制通过为通道分配自适应权重来自动调整通道特征响应值。

为了提高残差网络利用重要特征的能力,我们在残差模块中引入了信道关注机制,提出了CM-ResNet。

CM-ResNet模块结构如图3所示。
在这里插入图片描述
C.多尺度感受野机制

不同感受野的卷积核提取的特征类型不同,感受野越大提取的特征越全面,感受野越小提取的特征越细致[36]。由于液压系统故障的复杂性,信号的全局和局部都会包含潜在的故障信息,使用单一大小的卷积核可能无法提取完整的故障特征。为此,我们设计了一个多尺度的感受野卷积模块,并将其引入残差网络中。其中,多尺度模块由一个1 × 1卷积层和两个3 × 3卷积层串联而成,其结构如图4所示。

在这里插入图片描述
首先,采用1 × 1卷积层压缩图像深度,减少计算量;然后,在第二层卷积层进行3 × 3尺度的特征提取。第三,将第二层提取的特征继续在下一层进行3 × 3卷积。由于两个3 × 3卷积核的感知场等价于一个5 × 5卷积核,我们得到图4。多尺度感受野机制模块。

第三层为5 × 5比例的特征。与残差模块相同,在每次卷积后执行批正则化,并使用ReLU函数激活。最后,对三个卷积层提取的输出进行融合,得到多尺度特征。通过重用卷积特征,在引入较少参数的情况下实现多尺度感受野,有效地减少了计算量。

  • 7
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这些模型都是用于目标检测的,下面分别介绍一下它们的特点: 1. ResNet-18:ResNet-18是一种经典的深度卷积神经网络结构,由于其具有较浅的网络深度和较少的参数量,因此训练速度较快,在目标检测任务中表现较好。 2. VGG-SincNet:VGG-SincNet是一种基于卷积神经网络的语音信号处理方法,通过直接从原始的语音波形中提取特征,能够在语音信号的目标检测任务中发挥很好的作用。 3. SJTU-RAS:SJTU-RAS是一种基于区域提议网络(Region Proposal Network, RPN)和快速区域卷积神经网络(Fast R-CNN)的目标检测方法,具有较高的检测速度和准确率。 4. MTI-MTR:MTI-MTR是一种基于多任务交互网络(Multi-Task Interaction Network, MTI)和多模态特征融合(Multi-Modal Feature Fusion)的目标检测方法,能够处理多种类型的目标检测任务。 5. SCNN:SCNN是一种基于卷积神经网络的目标检测方法,采用金字塔式的卷积和池化操作,能够在不同尺度下进行目标检测。 6. Ensemble Models:Ensemble Models是一种模型集成的方法,通过将多个不同的目标检测模型进行融合,能够提高目标检测的准确率和鲁棒性。 7. SSAD:SSAD是一种基于单阶段目标检测(Single-Stage Object Detection)的方法,使用无监督的自编码器进行特征提取,能够快速地进行目标检测。 8. TE-ResNet:TE-ResNet是一种基于时域编码(Temporal Encoding)和残差网络(Residual Network)的目标检测方法,能够有效地处理视频序列中的目标检测任务。 总的来说,这些模型都具有各自的特点和优势,在不同的应用场景中有着广泛的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值