随着对大语言模型(LLM)训练、微调和推理的需求不断增长,找到高性价比的云平台已成为研究人员、开发者和企业的关键任务。这些大型模型需要高端 GPU,且 VRAM 需求巨大。例如,在 AWS 上使用 GPU 可能轻松达到 每小时 8 美元,而且由于 LLM 任务通常需要多 GPU 配置,成本可能在短短几小时内迅速攀升。
为了帮助大家降低开支,本篇文章将比较 五大热门云平台,它们在 LLM 微调方面提供了较为优惠的价格:Vast.ai、Together AI、Hyperstack、Cudo Compute 和 Runpod。我们将重点分析它们的 定价情况(特别是 H100 和 A100 GPU),并探讨各平台的特点和优势。
1. Vast.ai - 最便宜的 LLM 训练选项!
Vast.ai 是目前最具性价比的 LLM 微调云平台。它采用 GPU 租赁市场模式,提供多种价格选择。不过,用户需要提前申请 GPU 资源。此外,Vast.ai 还支持 可中断实例,通过竞价拍卖机制节省 50% 甚至更多 的成本。
- H100 SXM 起价:$1.93/小时
- A100 PCIe 起价:$0.64/小时
特点与优势:
✅ 提供消费级 GPU(如 5090 和 4049),价格更低
✅ 灵活的企业级 GPU 选择与配置
✅ 采用市场模式,价格更具竞争力
✅ 适用于各种规模的项目
2. Together AI - 低成本 API 访问 + 强大微调支持
Together AI 以低成本 GPU 使用费著称,非常适合预算有限的用户。与传统云供应商不同,Together AI 是一家 AI 公司,提供 低价 API 访问,可用于 Llama 3.3 等开源模型。此外,它支持微调、训练和部署,让用户能在同一平台上完成所有任务。
- H100 SXM 起价:$1.75/小时
- A100 PCIe 起价:$1.30/小时
特点与优势:
✅ 可申请 GPU 集群进行测试
✅ 友好的用户界面与集成能力
✅ 支持迁移学习、LoRA 和 RLHF 等高级微调技术
✅ 适合不同技术水平的团队
3. Hyperstack - 适合长期项目的超值选择
Hyperstack 提供高性价比的云计算解决方案,专注于 AI 和机器学习任务的可扩展性与低成本。
- H100 SXM 起价:$1.95/小时
- A100 PCIe 起价:$1.35/小时
Hyperstack 采用预留定价模式,可大幅节省成本,比传统云平台便宜 75%,特别适合长期项目。
特点与优势:
✅ 可预留 GPU 集群,价格更低
✅ 提供优惠的 GPU 使用定价模式
✅ 参与 NVIDIA Inception 计划可获得额外折扣
✅ 针对 GPU 负载进行了优化
4. Cudo Compute - 灵活按需租赁,支持去中心化计算
Cudo Compute 以灵活的 GPU 租赁模式和批量折扣而闻名,适用于 AI、机器学习、渲染等大规模计算任务。
- H100 SXM 起价:$2.45/小时
- A100 PCIe 起价:$1.50/小时
特点与优势:
✅ 可通过仪表盘或 CLI 工具部署实例
✅ 去中心化云平台,可利用闲置计算资源降低成本
✅ 支持 dstack 集成,便于容器编排
✅ 强调安全性和数据隐私保护
5. Runpod - 最易用的 LLM 训练平台
Runpod 是数据科学家最喜爱的 GPU 云平台,提供稳定易用的 GPU 计算环境。它支持按需实例和竞价实例,不过 H100 的价格略高于部分竞争对手。
- H100 SXM 起价:$2.79/小时
- A100 PCIe 起价:$1.64/小时
Runpod 的 A100 价格极具竞争力,与 Vast.ai 的最低价相当,但 H100 价格相对较高。
特点与优势:
✅ 可扩展 GPU 解决方案,专注于易用性
✅ 适用于多种 AI 计算任务
✅ 企业级高性价比 GPU 选项
结论:哪家云平台最适合 LLM 微调?
在 LLM 微调方面,选择合适的云平台可以极大影响项目的成本和效率。从本次对比来看:
- Vast.ai 是最便宜的选择,特别是 A100 GPU 的价格最低,适合预算有限的用户。
- Together AI 和 Hyperstack 也提供极具竞争力的价格,Together AI 在易用性方面表现突出,而 Hyperstack 通过长期预留提供额外折扣。
- Cudo Compute 适合寻找去中心化计算方案的用户,并提供灵活的 GPU 租赁选项。
- Runpod 则是最易用的平台,专为数据科学家和 AI 研究人员优化。
根据你的需求和预算,选择最适合的云平台,有效降低 LLM 微调成本! 🚀