epoch:
- 即一般完成一个完整的epoch之后,去计算模型的损失函数、准确率之类的数据,最好不要在中间就去计算。一个epoch就是遍历一遍完整的数据集。
- 中间可以输出损失、准确率数据,但是最好不要按照中间的损失和准确率去做操作。另外,如果模型收敛比较慢,通常是由于学习率的原因,对于RNN,学习率可以从0.001开始尝试。另外目前来看,训练数据缺少一个图形绘制,有图形绘制可能不影响最终的结果,但是可以看到训练过程。最后,如果尝试多次模型一直表现不好,可以通过改变思路,比如将分类变成回归等,改变数据集的方式来优化。一定要有测试集和验证集合,进行交叉验证,不然,很可能最终的模型是无用的。