第二章、机器学习之训练轮数(epoch)

机器学习入门之重要参数的理解

第一章 批数据训练(batch)

第二章  训练轮数(epoch)

第三章 学习率(LR : learning rate)

第四章 图像区块(patch)

第五章 滤波器(filter)


目录

机器学习入门之重要参数的理解

前言

训练轮数(epoch)是什么?

总结


前言

在开启学习机器学习之前,我们先来了解了解机器学习中重要的参数吧,本文介绍了机器学习的基础内容之训练轮数(epoch)。

训练轮数(epoch)是什么?

        Epoch是一个超参数,它定义了学习算法在整个训练数据集中的工作次数。

        Epoch是由一个或多个Batch组成的。E.g.已知,具有一批的Epoch称为

<think>嗯,用户想找关于Adam优化器的图表或示意图。首先,我需要回忆Adam优化器的基本原理,比如自适应学习率、动量项等,这样在解释图表时才能准确。然后,我应该考虑常见的图表类型,比如收敛曲线、参数更新路径比较,或者是梯度更新过程的示意图。 接下来,用户可能需要知道在哪里能找到这些图表。学术论文和教材应该是个好来源,比如Goodfellow的《深度学习》或者原论文。另外,像Towards Data Science、Machine Learning Mastery这样的技术博客通常会有直观的图示。在线课程比如Coursera的机器学习课程也可能有相关图表。 同时,用户可能需要自己生成图表,这时候应该推荐他们使用Python库如Matplotlib或Plotly来绘制学习率变化、损失曲线等。另外,机器学习框架如TensorFlow的TensorBoard可能有内置的可视化工具,可以展示训练过程中的参数变化。 还要注意引用的问题,用户提供的引用中有几个来源可能相关,比如引用[2]的GeeksforGeeks可能有相关文章,引用[3]的会议论文列表里可能有Adam的原论文或其他优化方法的比较。需要检查这些引用是否确实包含Adam的内容,如果引用中的资料不相关,可能需要建议其他资源,比如原论文或权威教材。 另外,用户的问题是关于图表,可能需要区分理论示意图和实际训练中的可视化。比如,参数空间中的路径图属于理论示意图,而训练损失曲线则是实际应用中的图表。要确保回答中涵盖这两种类型,并指导用户如何获取或生成。 最后,要生成相关问题,可能涉及Adam与其他优化器的比较、超参数调整、实际应用中的问题等。这些问题需要自然延伸当前主题,帮助用户进一步探索。</think>关于Adam优化器的图表和示意图获取途径及解读: ### 一、核心图表类型 1. **参数更新路径示意图** - 展示Adam在非凸函数优化中的路径轨迹,对比SGD、RMSProp等优化器 - 特点:在参数空间中显示带有动量修正和自适应学习率的更新方向[^1] 2. **学习率自适应过程图** - 呈现不同参数对应的学习率缩放过程: $$ \hat{m}_t = \frac{m_t}{1-\beta_1^t} $$ $$ \hat{v}_t = \frac{v_t}{1-\beta_2^t} $$ $$ \theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t $$ [^2] 3. **收敛速度对比图** - 常用损失函数曲线,展示Adam与其他优化器的收敛速度差异 ### 二、获取途径 1. **学术资源**: - 原始论文《Adam: A Method for Stochastic Optimization》中的收敛性证明示意图 - Goodfellow《深度学习》第8章优化章节 2. **技术博客**: - Towards Data Science的交互式优化器对比文章 - Machine Learning Mastery的优化器可视化专题 3. **可视化工具**: ```python import matplotlib.pyplot as plt from keras.optimizers import Adam # 绘制学习率变化曲线 epochs = range(1,101) lr = [Adam(learning_rate=0.001).lr * (1./(1. + 0.01*e)) for e in epochs] plt.plot(epochs, lr) ``` ### 三、典型应用示意图案例 1. **梯度更新方向修正图**: - 展示动量项对梯度方向的修正过程 - 包含一阶矩估计和二阶矩估计的指数移动平均过程 2. **超参数敏感性图**: - β1(默认0.9)和β2(默认0.999)对训练过程的影响 - 不同ε值(1e-8到1e-4)下的收敛稳定性对比 建议通过TensorBoard的优化器分析模块获取实时训练可视化: ```python from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() # 在训练循环中记录参数 for epoch in epochs: writer.add_scalar('Loss/train', loss, epoch) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值