使用 YOLOv 11 模型实现实时手语检测 可同时识别多个手语手势

项目:Yolo11 - Roboflow - OpenCV

手语是聋哑人之间以及他们与外界沟通的重要工具,然而,许多不会手语的人无法与他们有效交流。这个项目的目标是通过自动检测手语手势,构建一个可以帮助聋哑人和普通人之间沟通的桥梁,提升手语翻译的自动化和效率。

YOLO是一种实时物体检测算法,它能够在视频或图像中快速准确地识别和定位目标。

该项目通过使用YOLOv11 模型来检测和分类手语手势,从而构建一个能够自动识别手语的系统。

  • YOLOv11 物体检测模型
    • YOLO 是一种一次性预测物体框架的技术,与传统的区域推荐网络相比,它在实时处理能力上更为出色,特别适合用于视频流和实时检测。
    • YOLOv11 是 YOLO 系列中的最新版本,优化了检测速度和准确度,能够在较低的计算资源下提供高效的检测性能。
    • 在这个项目中,YOLOv11 被用于识别视频中的手语手势,模型能够识别多个手势类别,并在图像或视频中精确定位手语的区域。
    • 通过高效的 GPU 加速,模型能够以较低的延迟提供高精度的检测结果,适合用于实时手语翻译系统。
  • 手语数据集(Asl_Videos)
    • 项目使用的训练数据来自 Asl_Videos 数据集,这是一个用于手语识别的大型视频数据集&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值