项目:Yolo11 - Roboflow - OpenCV
手语是聋哑人之间以及他们与外界沟通的重要工具,然而,许多不会手语的人无法与他们有效交流。这个项目的目标是通过自动检测手语手势,构建一个可以帮助聋哑人和普通人之间沟通的桥梁,提升手语翻译的自动化和效率。
YOLO是一种实时物体检测算法,它能够在视频或图像中快速准确地识别和定位目标。
该项目通过使用YOLOv11 模型来检测和分类手语手势,从而构建一个能够自动识别手语的系统。
- YOLOv11 物体检测模型:
- YOLO 是一种一次性预测物体框架的技术,与传统的区域推荐网络相比,它在实时处理能力上更为出色,特别适合用于视频流和实时检测。
- YOLOv11 是 YOLO 系列中的最新版本,优化了检测速度和准确度,能够在较低的计算资源下提供高效的检测性能。
- 在这个项目中,YOLOv11 被用于识别视频中的手语手势,模型能够识别多个手势类别,并在图像或视频中精确定位手语的区域。
- 通过高效的 GPU 加速,模型能够以较低的延迟提供高精度的检测结果,适合用于实时手语翻译系统。
- 手语数据集(Asl_Videos):
- 项目使用的训练数据来自 Asl_Videos 数据集,这是一个用于手语识别的大型视频数据集&#x