本篇文章主要是讲述的是TI如何利用中国剩余定理进行速度解模糊
背景
- 为什么要进行速度解模糊呢?
当一个物体的移动速度超过了雷达可检测的最大速度时,雷达就不能准确的测量物体的速度,因此要增大雷达可检测的最大速度来准确检测目标的速度 - 利用什么方法进行解模糊呢?
中国剩余定理、doppler相偏补偿
基础知识
相关速度公式
雷达速度最大检测公式: V m a x = λ 4 T c V_{max}=\frac{\lambda}{4T_c} Vmax=4Tcλ,雷达所需要支持 V m a x V_{max} Vmax越大,chirp的持续时间 T c T_c Tc就要越小
雷达对于距离为R的目标形成的零中频信号的频率 f I F f_{IF} fIF为 f I F = 2 R c ∗ B T c f_{IF}=\frac{2R}{c}*\frac{B}{T_c} fIF=c2R∗TcB
因此当chirp的持续时间 T c T_c Tc减小后,距离为R的零中频的就会增大,但是不能超过中频带宽的 F I F F_{IF} FIF限制,必须满足: f I F < F I F f_{IF}<F_{IF} fIF<FIF,如果超过 F I F F_{IF} FIF,目标的反射信号就会被低通滤波器抑制
中国剩余定理
中国剩余定理:如果一个自然数对一组互质的因子分别取余数,那么在知道余数和互质因子的情况下,一定可以计算出原始的自然数
定义:
假设整数
m
1
,
m
2
,
…
,
m
n
m_1,m_2,…,m_n
m1,m2,…,mn两两互素,则对于任意的整数
a
1
,
a
2
,
…
,
a
n
a_1,a_2,…,a_n
a1,a2,…,an,方程组:
{
x
≡
a
1
(
m
o
d
m
1
)
x
≡
a
2
(
m
o
d
m
2
)
.
.
.
.
.
.
x
≡
a
n
(
m
o
d
m
n
)
\left\{\begin{matrix} x\equiv a_1(mod m_1) \\ x\equiv a_2(mod m_2)\\ ......\\ x\equiv a_n(mod m_n) \end{matrix}\right.
⎩⎪⎪⎨⎪⎪⎧x≡a1(modm1)x≡a2(modm2)......x≡an(modmn)
都存在整数解,且若
X
,
Y
X,Y
X,Y都满足该方程组,则必有
X
≡
Y
(
m
o
d
N
)
X\equiv Y(modN)
X≡Y(modN),其中
N
=
∏
i
=
1
n
m
i
N=\prod_{i=1}^{n}m_i
N=∏i=1nmi
也就是,
x
=
∑
i
=
1
n
a
i
∗
N
m
i
∗
[
(
N
m
i
)
−
1
]
m
i
(
m
o
d
N
)
x=\sum_{i=1}^{n}a_i*\frac{N}{m_i}*[(\frac{N}{m_i})^{-1}]_{m_i}(modN)
x=∑i=1nai∗miN∗[(miN)−1]mi(modN)
TI解决方案
假设模糊速度为 V a V_a Va、实际速度 V r V_r Vr,则目标的模糊速度与实际速度 V r V_r Vr之间的关系为 V a = V r m o d V m a x V_a=V_r modV_{max} Va=VrmodVmax,也就是模糊速度 V a V_a Va是实际速度为 V r V_r Vr的最高检测速度 V m a x V_{max} Vmax的余数
由于最高检测速度 V m a x V_{max} Vmax与chirp的周期 T c T_c Tc相关。因此,TI的解决方案是定义了两种持续时间( T c T_c Tc)不同的chirp(fast chirp、slow chirp),这两种chirp分别对应的最高检测速度 V m a x V_{max} Vmax不同,同一个目标的 V r V_r Vr在这两种chirp下得到的 V a V_a Va也不同。因此,这样的条件就符合了中国剩余定理,因此可以就计算 V a V_a Va得到物体实际速度 V r V_r Vr
Fast-slow chirp
通过最大可测速度公式计算得出,单独的Fast chirp和Slow chirp都不能达到30m/s的最大检测速度。
因为Fast chirp和Slow chirp的最高检测速度和速度分辨率不同,物体的实际速度在两种chirp的2D-FFT结果中对应的Doppler索引不同。
可以根据物体的实际速度是否超过Fast chirp的最大检测速度做出假设,并依靠这个假设推算出Slow chirp上对应的Doppler索引,然后通过Slow chirp这个Doppler索引上的目标反射能量值判断之前的假设是否成立
TI算法
中国剩余定理的速度扩展算法描述
- 对Fast-chirp进行Doppler维CFAR,获得目标在速度维上的峰值索引PeakIdx_fast,并记录下峰值能量为PeakVal_fast
- 对PeakIdx_fast进行内插,获得目标的速度为Vel_fast
- 假设二目标的速度V_hypo分别为Vel_fast-2Vmax_fast,Vel_fast,Vel_fast+2Vmax_fast
- 对于以上三个假设速度V_hypo,分别计算出其在Slow-chirp上对应的速度索引PeakIdx_slow_hypo
- 提取Slow-chirp的2D-FFT结果在索引PeakIdx_slow_hypo上对应的能量PeakVal_slow_hypo,同时记录其左右两个索引上的能量
- 当PeakVal_slow_hypo大于其左右两个索引上的信号能量,且与PeakVal_fast的差值小于门限Threshold,判定这个假设速度V_hypo为目标实际速度的一个备选值Vel_candidate
- 从验证通过的所有备选值Vel_candidate中选中能量最大的一个Vel_candidate_max
- 输出目标的速度Vel为Vel_candidate_max
srr demo工程中是如何实现的?
在srr demo中,subframe0设计的波形是fast chirp和slow chirp,因此,可以对subframe0进行速度扩展,下图是srr demo中subframe0的数据处理流程图:
在上图中,速度扩展是在每个多普勒维度上执行的,然后将数据重新更新到sumAbs中,具体实现程序是在srrdemo_16xx_dss工程中的dss_data_path.c文件中1509行~1615行,具体如下:
好了,关于利用中国剩余定理的速度解模糊就介绍完了。
参考文献:
- 《AWR1642汽车雷达的速度扩展算法研究》
- TI的mmwave_automotive_toolbox_3_2_0中的lab0002_short_range_radar工程