离散数学概念整理2

命题变元

如果𝑃代表真值未指定的任意命题,我们就称𝑃为命题变元

命题常元

如果𝑃代表一个真值已指定的命题,我们就称𝑃为命题常元。

以“真”、“假”为其变域的变元,称为命题变元;T和F称为命题常元。

命题公式

惯上把含有命题变元的断言称为命题公式。

  • 单个命题变元和命题常元叫原子公式
  • 由以下形成规则生成的公式叫命题公式(简称公式):
    ① 单个原子公式是命题公式。
    ② 如果𝐴和𝐵是命题公式,则¬𝐴 、𝐴∧𝐵、𝐴∨𝐵、𝐴→𝐵、𝐴↔𝐵都是命题公式。
    ③ 只有有限步地应用规则①和②生成的公式,才是命题公式。

在不致产生混乱时,我们把命题公式也叫做命题

逻辑等价命题

两个命题公式如果有相同的真值,则称它们是逻辑等价命题

Eg1

在这里插入图片描述

对有𝑛个命题变元的命题公式𝐴(𝑃1, 𝑃2, ⋯ , 𝑃𝑛) ,命题变元的真值有2𝑛种不同的组合。每一种组合叫做一种指派,一共有2𝑛种指派,这就是说真值表有2𝑛行。对应于每一指派,命题式得到一确定的值,即命题公式成为具有真假值的命题,于是可能出现以下情况:

  • 重言式(永真式):对应于所有指派,命题公式均取值真。这种命题公式叫重言式,或叫永真式,例如𝑃∨¬𝑃。

  • 矛盾式(永假式):对应于所有指派,命题公式均取值假。这种命题公式叫矛盾式,或叫永假式,例如𝑃∧¬𝑃 。

  • 偶然式:不是永真式,也不是永假式,这种命题公式叫偶然式。

  • 矛盾式(永假式):对应于所有指派,命题公式均取值假。这
    种命题公式叫矛盾式,或叫永假式,例如𝑃∧¬𝑃 。

一个公式如果至少存在一个指派,使其值为真,则称此公式为
可满足的; 一个公式如果至少存在一个指派,使其值为假,则
称此公式为非永真。

  • 重言式的否定是矛盾式,矛盾式的否定是重言式,所以研究其
    一就可以了。
  • 重言式的合取、析取、蕴含、等值等都是重言式。 这样,由
    简单的重言式可推出复杂的重言式。

➢ 逻辑恒等式(挺像逻辑等价命题哈)

设𝐴: 𝐴(𝑃1, 𝑃2, ⋯ , 𝑃𝑛),𝐵: 𝐵(𝑃1, 𝑃2, ⋯ , 𝑃𝑛)是两个命题公式,这里𝑃𝑖 (𝑖 = 1,2, ⋯ , 𝑛)不一定在两公式中同时出现。如果𝐴↔𝐵是重言式,即𝐴与𝐵对任何指派都有相同的真值,此时,记作𝐴⇔𝐵,称为逻辑恒等式,读做“𝐴恒等于𝐵”。

𝐴⇔B 即 A和B逻辑等价的另一种描述方式
在这里插入图片描述

在这里插入图片描述

➢ 永真蕴涵式

如果𝐴→𝐵是一永真式,那么称为永真蕴含式,记为𝐴⇒𝐵,读做“𝐴永真蕴含𝐵”。
在这里插入图片描述

Eg

➢ 证明永真蕴含式𝐼6: (𝑃 → 𝑄) ∧ (𝑄 → 𝑅) ⇒ (𝑃 → 𝑅)。
证明:
✓ 只需证当(𝑃→𝑄)∧(𝑄→𝑅)的真值为真时,(𝑃→𝑅)的真值为真。注意到(𝑃→𝑄)∧(𝑄→𝑅)为真当且仅当𝑃→𝑄和𝑄→𝑅同时为真。假设𝑃→𝑄和𝑄→𝑅同时为真。
显而易见,当𝑃的真值为真且𝑄和𝑅的真值都为真时,假设成立,此时𝑃→𝑅为真;
当𝑃的真值为假且𝑄的真值为假时,假设成立,此时𝑃→𝑅为真;当𝑃的真值为假、𝑄的真值为真且𝑅的真值为真时,假设成立,此时𝑃→𝑅为真。
证毕。

或列真值表

综上

永真蕴含式可用真值表证明,也可用以下办法证明:
(1) 假定前件是真,若能推出后件是真,则此蕴含式是永真蕴含式;
(2) 假定后件是假,若能推出前件是假,则此蕴含式是永真蕴含式(因按逆反律: 𝑃→𝑄⇔¬𝑄→¬𝑃)。

恒等式和永真蕴含式的两个性质

✓ 若𝐴⇔𝐵 、𝐵⇔𝐶 ,则𝐴⇔𝐶;
✓ 若𝐴⇒𝐵、𝐵⇒𝐶,则𝐴⇒𝐶。

代入规则和替换规则

代入规则

一重言式中某个命题变元出现的每一处均代入以同一公式后,所得的仍是重言式。

这条规则之所以正确是由于重言式之值不依赖于变元的值的缘故。例如,𝑃∧¬𝑃⇔F

代入后所得公式称为原公式的代入实例。

替换规则

➢ 设有恒等式𝐴⇔𝐵,若在公式𝐶中出现𝐴的地方替换以𝐵(不必每一处)而得到公式𝐷 ,则𝐶⇔𝐷。
✓ 子公式:如果𝐴是合式公式𝐶中完整的一部分,且𝐴本身是合式公式,则称𝐴是𝐶的子公式。
✓ 规则中“公式𝐶中出现𝐴”意指“𝐴是𝐶的子公式”。
✓ 这条规则的正确性是由于在公式𝐶和𝐷中,除替换部分外均相同,但对任一指派,𝐴和𝐵的真值相同,所以𝐶和𝐷的真值也相同,故 C<=>D

应用这两条规则和已有的重言式可以得出新的重言式。

此处建议多看看课本例题

熟练运用课本上的那个表格

对偶公式

设有公式𝐴,其中仅有联结词∧、∨、¬。在𝐴中将∧ 、∨、𝑇、𝐹分别换以∨、∧、𝐹、𝑇得公式𝐴,则𝐴称为𝐴的对偶公式。对𝐴采取同样手续,又得A,所A也是𝐴的对偶。因此,对偶是相互的。

定理1

设𝐴和𝐴是对偶式,𝑃1, 𝑃2, ⋯ , 𝑃𝑛是出现于𝐴和𝐴中的所有命题变元,于是¬𝐴(𝑃1, 𝑃2, ⋯ , 𝑃𝑛) ⇔ 𝐴(¬𝑃1,¬𝑃2, ⋯ ,¬𝑃𝑛)

定理2

若𝐴⇔𝐵,且𝐴、𝐵为由命题变元𝑃1, 𝑃2, ⋯ , 𝑃𝑛及联结词∧、∨、¬构成的公式,则𝐴 ⇔ 𝐵
(易由定理1证明)
本定理常称为对偶原理

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值