波的数学描述
某个时刻,波的形状可以看作一系列点(x,y)的集合,用函数y=∫(x)来描述。下一个时刻,波沿着传播方向移动v·t距离。绳子上某个点的纵坐标y不仅跟横轴x有关,还跟时间t有关,用二元函数y=f(x,t)来描述一个波。
波在传播的时候,不同时刻波所在的位置不一样,但形状始终是一样的。
在t=0时,波的形状为f(x,0);
经过时间t之后,波的形状为f(x,t);在时间t后,波向右边移动了t的距离;
经过时间t之后,波的形状也可以表示为f(x-t,0);经过时间t之后的波的形状那么它们的形状肯定是一样的。
波的数学表达式:f(x,t)=f(x-t,0)。
波的力学分析
牛顿运动定律告诉我们:力是改变物体运动状态的原因。
过程:初始点一端有手的力,另一端是相邻质点的张力,初始点一端被手拉,一端被相邻质点拉。力的作用是相互的,相邻质点同样也被初始点拉,相邻质点附近的质点在另一端给它张力。这个过程会一直传播。
绳子没有打结也不能拉长,绳子内部的张力处处相等。
下面在绳子上取一段微元dtl进行受力分析,由于绳子上的点它在波动时只是上下运动,水平方向它是不会动的,所以只要分析垂直方向的受力情况就可以,绳子内部它的张力是处处相等的,也就是说张力大小它都是Ft那么在A点,它在垂直方向上的分量就是,这个sin角是Ft与水平方向的一个夹角,那么B点垂直方向的力就是
。那么dl这段微元,它受到的合外力就是
再分析一下它的质量,那么假设绳子上单位长度的质量是
那么它的加速度,速度是位移对时间的导数,那么加速度它又是速度对时间的导数,所以说加速度它就等于位移对时间的二次导数。而现在分析的只是垂直方向,那么就是y对t的二次偏导数,那么这样的话就可以用牛顿第二定律f=ma构造方程,也就得出
下面再把这个方程给化简一下:
经典波动方程
拓展
所谓的经典它指的就是宏观而且低速,那么宏观与之相对的就是微观,那么低速与之相对的就是高速,那么经典与之相对的就是牛顿关,而微观与之相对的就是量子观,那么高速也是相对的就是相对论观,那么这些不同的世界观与之相对应的牛顿观就是所谓的经典波动方程;量子观相对的就是薛定谔方程,相对论观与之相对的就是狄拉克方程,这三类方程其实都是描述波的状态,只不过经典波动方程,它是适用于与宏观且低速的情况下,那么需定义方程它适用于微观的量子层面的,那么狄拉克方程它是适用于高速的,也就是接近光速情况下的一种情形。