矩阵分析与应用-06-随机向量03

正态随机向量

若随机向量x(\xi)=[x_1(\xi),x_2(\xi),...,x_m(\xi)]^T的各分量为联合正态分布的随机变量,则称()为正态随机向量。实随机向量和复随机向量的概率密度函数表示稍有不同。
一个均值向量为\mu_x。和协方差矩阵为\Gamma _x。的实正态随机向量记作x\sim N(\mu_x ,\Gamma_x),其概率密度函数为

f(x)=\frac{1}{(2\pi)^{m/2}|\Gamma_x|^{1/2}}exp\left\[ -\frac{1}{2}(x-\mu_x)^T\Gamma_x^{-1}(x-\mu_x) \right\]

其中,|\Gamma_x|表示矩阵\Gamma _x的行列式,指数项(x-\mu_x)^T\Gamma_x^{-1}(x-\mu_x)x_i的正定二次型函数。

这个正定二次型函数也可以写成:

(x-\mu_x)\Gamma_x^{-1}(x-\mu_x)=\sum_{i = 1}^m \sum_{j=1}^m\Gamma_x^{-1}(i,j)(x_i-\mu_i)(x_j-\mu_j)

 其中,\Gamma_x^{-1}(i,j)表示逆矩阵\Gamma_x^{-1}(i,j)元素,\mu_i=E\left \{ x_i \right \}是随机变量x_i的均值。

实正态随机向量的特征函数为

\Phi _x(w) = exp(jw^T\mu_x-\frac{1}{2}w^T\Gamma_xw)

x=[x_1,x_2,...,x_m]^T,其每个元素服从复正态分布,即x_i \sim CN(\mu_i,\sigma_i^2),则x称为复正态随机向量,记作x \sim CN(\mu_x,\Gamma_x),其中,\mu_x=[\mu_1,\mu_2,...,\mu_m]^T。若 x_i=u_i+jv_i;,并且实随机向量[u_1,v_1]^T,[u_2,v_2]^T,...,[u_m,v_m]^T统计独立,则复随机正态向量x 的概率密度函数为

f(x)=\prod_{i = 1}^mf(x_i)=(\pi^m \prod_{i=1}^m\sigma_i^2)^{-1}exp(-\sum_{i=1}^m\frac{1}{\sigma^2_i|x_i-\mu_i|^2}) = \frac{1}{\pi^m|\Gamma_x|}exp[-x(x-\mu_x)^H\Gamma_x^{-1}(x-\mu_x)]

正态随机向量具有以下重要性质。

(1〕概率密度函数由均值向量和协方差矩阵完全描述。

(2)若正态随机向量的各个分量相互统计不相关,则它们也是统计独立的。

(3)均值向量\mu_x和协方差矩阵\Gamma _x的正态随机向量x 的线性变换y(\xi)=Ax(\xi)仍然为正态随机向量,其概率密度函数为

f(y)=\frac{1}{(2\pi)^{m/2}|\Gamma_y|^{1/2}}exp\left\[ -\frac{1}{2}(y-\mu_y)^T\Gamma_y^{-1}(y-\mu_y) \right\](实正态随机向量)

f(y)=\frac{1}{\pi^m|\Gamma_y|}exp[-(y-\mu_y)^H\Gamma_y^{-1}(y-\mu_y)](复正态随机向量)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值