矩阵分析与应用-14-行列式

行列式

一个n\times n正方矩阵A的行列式记作det(A)|A|,定义为

det(A)=|A|=\begin{vmatrix} a_{11} &a_{12} &... &a_{1n} \\ a_{21}) &a_{22} & ... &a_{2n} \\ ... & ... & &... \\ a_{n1} &a_{n2} & ... & a_{nn} \end{vmatrix}

A=\{a\}\in C^{1\times 1},则它的行列式由det(A)=a 给出。

矩阵A去掉第i行和第j列之后得到的剩余行列式记作A_{ij},称为元素a_{ij}的余子式。特别地,当i=j主时,A_i=A_{II}称为A的主子式。若令A_{ij}n\times n矩阵A删去第i行和第j列之后得到的(n - 1)×(n -1)子矩阵,则

 A_{ij}=(-1)^{i+j}det(A_{ij})

 一个n\times n矩阵的行列式等于其任意行(或列)的元素与相对应的余子式乘积之和,

 也就是:

det(A)=a_{i1}A_{i1}+a_{i2}A_{i2}+...,a_{in}A_{in}=\sum_{j=1}^na_{ij}(-1)^{i+j}det(A_{ij})

 和

det(A)=a_{1i}A_{1i}+a_{2i}A_{2i}+...,a_{ni}A_{ni}=\sum_{i=1}^na_{ij}(-1)^{i+j}det(A_{ij})

行列式不等于零的矩阵称为非奇异短阵。

非奇异矩阵A存在逆知阵A^{-1}

 关于行列式的等式关系

行列式服从以下等式关系。

(1)〕如果矩阵的两行(或列)互换位置,则行列式保持不变。

(2)若矩阵的某行(或列)是其他行(或列)的线性组合,则det(A)=0。特别地,若某行(或列)与另一行(或列)成正比或相等,或者某行(或列)的元素均等于零,则det(A) = 0。

(3)任何一个正方矩阵A和它的转置矩阵AT具有相同的行列式,即

det(A)=det(A^T)

det(A^H)=[det(A^T)]^*

(4)单位矩阵的行列式等于1,即det(I)=1

(5)一个Hernitian矩阵的行列式为实数,因为

det(A)=det(A^H)=det(A^T)\Rightarrow det(A)=det(A^*)=[det(A)]^*

(6)两个矩阵乘积的行列式等于它们的行列式的乘积,即

det(AB)=det(A)det(B)

(7)对于一个三角(上三角或下三角)矩阵A,其行列式等丁三角矩阵主对角线所有元素的乘积,即

det(A)=\Pi^n_{i=1}a_{ii}

一个对角矩阵A=diag(a_{11},a_{22},a_{33},...,a_{nn})的行列式也等丁其对角元素的乘积。

(8)给定一个任意的常数(可以是复数) c,则

det(cA)=c^ndet(A)

(9)若A非奇异,则det(A^{-1})=(det(A))^{-1}

(10)对于矩阵A_{m\times m}, B_{m\times n},C_{n\times m},D_{n\times n}·分块矩阵的行列式满足

A非奇异\Leftrightarrow det\begin{bmatrix} A &B \\ C& D \end{bmatrix}=det(A)det(D-CA^{-1}B)

D非奇异\Leftrightarrow det\begin{bmatrix} A &B \\ C& D \end{bmatrix}=det(D)det(A-BD^{-1}C)

关于行列式的不等式关系

(1) Cauchy-Schwartz不等式:若A,B都是mx n矩阵,则

|det(A^HB)|^2\leq det(A^HA)det(B^HB)

(2) Hadamard不等式;对于n × m矩阵A,有

det(A)\leq \prod ^m_{i=2}\left\( \sum^m_{j=1}|a_{ij}|^2 \right\)^{1/2}

(3)Fischer不等式:若A_{m\times m},B_{m\times n},C_{n\times m},则 

det\left\(\begin{bmatrix} A & B\\ B^H& C \end{bmatrix}\right\)\leq det(A)det(C)

(4) Minkowski不等式:若A_{m\times m} \neq O_{m\times m}B_{m\times m} \neq O_{m\times m}半正定,则

\sqrt[m]{det(A+B)}\geq \sqrt[m]{det(A)}+\sqrt[m]{det(B)}

(5)正定矩阵A的行列式大于0,即det(A) >0。

(6)半正定矩阵A的行列式大于或者等于0,即det(A) ≥0。

(7)若mx m矩阵A半正定,则

(det(A))^{1/m}\leq \frac{1}{m}det(A)

(8)若矩阵A_{m\times m},B_{m\times n}均半正定,则

det(A+B)\geq det(A)+det(B)

(9)若A_{m\times m} 正定,B_{m\times n}半正定,则

det(A+B)\geq det(A)

(10)若A_{m\times m}正定,B_{m\times n}半负定,则

det(A+B)\leq det(A)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值