深度学习1——卷积神经网络CNN

本文介绍了卷积神经网络(CNN)的基本概念,包括卷积层、池化层、全连接层和非线性层。讨论了CNN的稀疏交互、参数共享、等变性等核心特性,并探讨了LeNet-5、AlexNet、VGGNet和ResNet等著名网络结构。CNN在图像识别和处理领域具有广泛的应用。
摘要由CSDN通过智能技术生成

什么是CNN?

卷积神经网络

  • 卷积层
  • 池化层
  • 全连接层
  • 非线性层,例如:ReLU
  • 其他层,例如:RNN

为什么CNN是有意义的?

动机(motivation)

卷积利用了下面4个想法来机器学习系统:

1.稀疏交互

  • 稀疏交互的概念:指卷积网络最后的全连接层与输入层之间的“间接连接”是非全连接的,多次卷积可以找出一种合理的连接,使输入图片分成各种“小区域”,这种小区域再成为全连接层的输入
  • 稀疏交互的实现:通过使用比输入更小的核(kernel)
  • 稀疏交互的作用:只需要存储更少的参数,在计算输出时,需要更少的运算 $O(m \times n) v.s.O(k \times n) $

没有稀疏交互的全连接层
上图为没有稀疏交互的全连接网络,可以看到计算 h 3 h_3 h3 时需要 x 1 x_1 x1 x 6 x_6 x6 的所有值。
有系数交互的卷积层
上图为有稀疏交互的卷积层,此时 kernel 的大小为3,移动的步长(stride)为1, h 3 h_3 h3 只依赖于 x 2 , x 3 , x 4 x_2, x_3, x_4 x2,x3,x4.
在这里插入图片描述
要注意的一点是,CNN的链接是稀疏的,但是随着层数的加深,更深层数的节点将与所有的输入节点相连(如上图所示),也就是说更深层次的节点有着更大的感受野。

  1. 参数共享
  • 在CNN中,参数是相互关联的:应用于一个输入的权重与应用于其他输入的权重值相关联

  • 在整个图像中使用相同 kernel,因此不是为每个位置学习一个参数,而是只学习一组参数

  • 向前传播的过程没有改变,仍然为 O ( k × n ) O(k \times n) O(k×n)

  • 存储的容量提高, k < < m , n k << m, n k<<m,n
    在这里插入图片描述3. 等变性(Equivariance)

  • 卷积的定义:
    s ( t ) = ( x ∗ w ) ( t ) = ∫ x ( a ) w ( t − a ) d a s(t) = (x *w)(t) = \int x(a)w(t-a)da s(t)=(xw)(t)=x(a)w(ta)da

  • 在卷积网络中, x x x 相当于输入, w w w 是权值,也就是卷积核, s s s 是特征图

  • 离散卷积:
    S ( i , j ) = ( I ∗ K ) ( i , j ) = ∑ m ∑ n I ( m , n ) K ( i − m , j − n ) S(i, j) = (I * K)(i, j) = \sum_m \sum_n I(m,n)K(i-m, j-n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值