在进行量化策略开发时,策略回测是一个关键步骤。虽然市面上存在许多量化回测平台,如三大矿(聚宽、米筐、优矿)等,但使用这些平台可能会遇到一些限制,例如无法深入了解回测过程、无法使用本地数据进行测试,以及策略安全性等问题。因此,除了自行搭建回测框架外,还可以考虑使用一些流行的基于Python开发的量化回测框架。以下是一些国内外知名的量化回测框架:
### Zipline
Zipline是由美国量化策略平台Quantopian开发和维护的,Quantopian的回测引擎也基于Zipline。此外,国内的聚宽、米筐、优矿等平台的回测引擎同样基于Zipline。Zipline是一个事件驱动的回测框架,具有完整的文档和活跃的社区。对于关注美股交易的用户来说,Zipline是一个不错的选择。然而,Zipline默认不支持A股数据,需要用户自行添加本地化数据进行回测。
**官方教程**:[Zipline Beginner Tutorial](https://www.zipline.io/beginner-tutorial)
**中文教程**:[Gitbook Zipline 中文教程](https://rainx.gitbooks.io/-zipline/content/)
### PyAlgoTrade
PyAlgoTrade也是一个事件驱动的回测框架,虽然名气不如Zipline,但它提供了完善的社区支持和详尽的文档。PyAlgoTrade在运行速度和灵活性方面据说优于Zipline,但不支持Pandas。
**官方教程**:[PyAlgoTrade Tutorial](http://gbeced.github.io/pyalgotrade/docs/v0.20/html/tutorial.html)
### BackTrader
BackT