OpenCV cv::triangulatePoints()函数使用方法

本文介绍了OpenCV中用于三角化的cv::triangulatePoints()函数,重点讲解了如何在左相机坐标系下进行三角化操作。首先,通过pixel2cam函数将像素坐标转换为归一化相机坐标,接着利用cv::triangulatePoints()实现立体视觉中的三角测量。
摘要由CSDN通过智能技术生成

OpenCV cv::triangulatePoints()函数使用方法

以左相机坐标系三角化

triangulatePoints(T1, T2, left, right, points_final) ;

Mat T1 = (Mat_<float>(3, 4) <<
		1, 0, 0, 0,
		0, 1, 0, 0,
		0, 0, 1, 0);
Mat T2 = (M
`triangulatePoints` 函数OpenCV 中的一个三角测量函数,用于将两个相机视角下的对应点恢复为三维空间中的点。以下是 `triangulatePoints` 函数使用方法: ```c++ void cv::triangulatePoints(InputArray projMatr1, InputArray projMatr2, InputArray projPoints1, InputArray projPoints2, OutputArray points4D) ``` 参数说明: - `projMatr1`:第一张图像的投影矩阵(3x4矩阵)。 - `projMatr2`:第二张图像的投影矩阵(3x4矩阵)。 - `projPoints1`:第一张图像中的对应点的坐标矩阵(Nx2或Nx3矩阵,N为点的数量)。 - `projPoints2`:第二张图像中的对应点的坐标矩阵(Nx2或Nx3矩阵,N为点的数量)。 - `points4D`:输出的三维点坐标矩阵(4xN矩阵)。 使用示例: ```c++ #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { Mat projMatr1 = (Mat_<double>(3, 4) << 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0); Mat projMatr2 = (Mat_<double>(3, 4) << 0.866, -0.5, 0, 1, 0.5, 0.866, 0, 0, 0, 0, 1, 0); Mat projPoints1 = (Mat_<double>(4, 2) << 0, 0, 1, 0, 0, 1, 1, 1); Mat projPoints2 = (Mat_<double>(4, 2) << 0.5, 0.5, 1.5, 0.5, 0.5, 1.5, 1.5, 1.5); Mat points4D; triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2, points4D); cout << "Triangulated Points: " << endl << points4D << endl; return 0; } ``` 在这个例子中,我们创建了两个相机视角下的点坐标矩阵 `projPoints1` 和 `projPoints2`。然后我们使用 `triangulatePoints` 函数将这些点恢复为三维空间中的点,并将结果保存在 `points4D` 中。最后,我们将 `points4D` 打印出来以查看恢复的三维点坐标。 注意,`projPoints1` 和 `projPoints2` 的大小必须相同。如果这些点是二维的,则必须将它们扩展为三维(将所有点的Z坐标设置为1)。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值