C++: void triangulatePoints(InputArray projMatr1, InputArray projMatr2, InputArray projPoints1, InputArray projPoints2, OutputArray points4D)
Python: cv2.triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2[, points4D]) → points4D
C: void cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, CvMat* projPoints1, CvMat* projPoints2, CvMat* points4D)
| Parameters: |
|
|---|
The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their observations with a stereo camera. Projections matrices can be obtained from stereoRectify().
与函数 reprojectImageTo3D() 不同,这里不需要视差。 triangulatePoints()仅需要内参数和外参数,讲匹配点的像素坐标转换到相机坐标(projPoints1 ,projPoints2)。
本文介绍了如何使用OpenCV库中的triangulatePoints函数从立体图像中重构3D点。该函数利用两台相机的投影矩阵和对应的特征点来计算3D空间中的点。与reprojectImageTo3D不同,此方法不依赖于视差,仅需内外参数即可将像素坐标转换为相机坐标。
5792

被折叠的 条评论
为什么被折叠?



